中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89627
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41643887      Online Users : 1190
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89627


    Title: Bayesian Optimization for Hyperparameter Tuning with Robust Parameter Design
    Authors: 黃雅若;Huang, Ya-Jo
    Contributors: 統計研究所
    Keywords: 類神經網路;超參數優化;貝氏優化;穩健參數設計;Neural network;hyperparameter optimization;Bayesian optimization;expected improvement;robust parameter design
    Date: 2022-07-21
    Issue Date: 2022-10-04 11:49:55 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在機器學習領域中,超參數調整對於深度學習演算法來說是一個很重要的步驟,不同的超參數設定可以直接影響模型效能。而貝氏優化一直是超參數調整的熱門方法,貝氏優化利用迭代的方式,不斷更新先驗與後驗分佈來找出最佳超參數組合。本研究利用貝氏優化與穩健參數設計的概念,提出了一種新的超參數優化方法。在優化過程中,該方法將控制因子及噪音因子(例如:初始權重、訓練樣本的選取)納入考量,以期提高求得最佳超參數組合之準確度。在模擬及實證例子中,依據不同類型的問題,發現所提出的方法會比傳統貝氏優化方法找到更接近真實超參數組合的設定。;Tuning hyperparameters is crucial to the success of deep learning algorithms because it affects the model performance directly. Therefore, hyperparameter tuning has received great attention. Bayesian optimization has always been a popular option for hyperparameter tuning, which obtains optimal values of hyperparameters in a sequential manner. This thesis presents a new hyperparameter optimization method using the concept of robust parameter design. We identify several noise factors (e.g, initial weights or random splitting training samples) for optimization. Simulations show that the proposed method can find hyperparameter settings that are closer to the real hyperparameter setting.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML78View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明