中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89628
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41642008      Online Users : 1383
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89628


    Title: Contrastive Principal Component Analysis for High Dimension, Low Sample Size Data
    Authors: 陳奕儒;Chen, Yi-Ju
    Contributors: 統計研究所
    Keywords: 子組發現;可視化;特徵選取;去噪;subgroup discovery;visualizing;feature selection;denoising
    Date: 2022-08-01
    Issue Date: 2022-10-04 11:49:58 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 主成分分析(PCA)是一種常用的線性降維方法,在降維過程中保留了數據之間變數的變異性。PCA 通常用於可視化單個數據集;對比成分分析 (CPCA) 是傳統 PCA的推廣。CPCA 可用於存在多個數據集(如實驗組和對照組)的情況,CPCA 可以在參考其他數據集的前提下探索特定數據集獨特的低維結構。然而,雖然 CPCA 已在許多領域被證明可以找到 PCA 忽略的重要數據模式(Abubakar Abid,2017),但CPCA 缺乏一個統計模型來告訴我們為什麼 CPCA 可以識別我們感興趣的那些變化。在本文中,我們提出 CPCA 的模型假設。我們將目標數據劃分為我們感興趣的信號
    矩陣和我們不感興趣的滋擾矩陣,並試圖說明我們不感興趣的滋擾矩陣對目標數據的影響可以通過 CPCA 移除。另一方面,我們通過模擬分析說明 CPCA 還原信號矩陣的優勢。除此之外,我們根據我們對 CPCA 的模型假設提出了一種新方法,用以幫助我們選取對執行 CPCA 很重要的對比參數。最後,我們通過調整對比參數在合成圖像示例中找到了感興趣的數據模式,並驗證了我們選擇對比參數的新方法可以達到相同的效果。;Principal Component Analysis (PCA) is a commonly used linear dimensionality reduction method and is often used to visualize a single dataset; Contrastive Component Analysis
    (CPCA) can be used in situations where there are multiple datasets, and CPCA can explore the unique low-dimensional structure of a specific dataset on the premise of referring to other datasets. However, while CPCA has been shown in many fields to find important data pat terns that PCA ignores (Abubakar Abid, 2017), CPCA lacks a statistical model to tell us why CPCA can identify those changes that we are interested in. In this paper, we propose a statis tical model for CPCA. We divide the target data into the signal matrix that we are interested in and the nuisance matrix that we are not interested in, and try to explain that the influence
    of the nuisance matrix on the target data can be removed by CPCA. On the other hand, we illustrate the advantages of CPCA in restoring the signal matrix using simulation analysis. Furthermore, we propose a new method based on our model to help us decide on the contrast
    parameter that is important to perform CPCA. Finally, we found data patterns of interest in the synthetic image example by adjusting the contrast parameter, and verified that our new method of choosing the contrast parameter can achieve the same effect.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML73View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明