中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89630
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41642699      在线人数 : 1346
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89630


    题名: 基於 Copula 下的馬可夫鏈模型對於常態序列數 據之在線變化點偵測;Online Changepoint Detection under a Copula-based Markov Chain Model for Normal Sequential Data
    作者: 郭東華;Kuo, Dong-Hua
    贡献者: 統計研究所
    关键词: 貝氏推論;變化點;Clayton copula;一階自我迴歸模型;馬可夫模型;平均絕對誤差;模型誤導;Bayesian Inference;changepoint;Clayton copula;the first-order autoregressive model;Markov model;mean absolute error;misspecification
    日期: 2022-08-03
    上传时间: 2022-10-04 11:50:02 (UTC+8)
    出版者: 國立中央大學
    摘要: 即時變化點檢測是辨別序列數據是否隨著時間的推移而發生結構變化的過
    程。在實務上,相關性的結構是時間序列分析的重要問題。此外,為了放寬相
    關性的限制,我們提出了一個建立在 Clayton copula 且其邊際分布為常態分佈的
    copula-馬可夫模型,並將我們提出的模型在不同的情況下與獨立的模型以及一
    階自我迴歸的模型進行比較。模擬的結果指出無論在何種情況下,我們提出的
    模型在準確率以及平均絕對誤差下皆表現得比其他兩個模型來的好。在實證研
    究中,我們考慮且偵測標準普爾 500 指數、日經 225 指數和富時 100 指數的每
    日對數報酬率在 2008 金融危機和 2020 冠狀病毒疾病大流行下報酬率的變化點,
    實證結果揭露我們提出的模型是可以捕捉有序列相關資料的結構變化。;Online changepoint detection is a procedure to identify whether a sequential data
    structure changes over time. In practice, the dependent structure is an important issue
    for time series analysis. To achieve flexibility limit dependence, we propose a copulabased Markov model based on the Clayton copula and the marginal distribution being
    a normal distribution and compare the proposed model with the independent model and
    the first-order autoregressive model under various scenarios. The simulation results
    indicate that the proposed model outperforms the other models in precision and mean
    absolute error (MAE) no matter the scenarios. For empirical studies, we consider the
    daily log returns of the S&P 500 Index, the Nikkei 225 Index, and the FTSE 100 Index to
    identify the changepoints in the period of the financial crisis in 2008 and the COVID-19
    pandemic in 2020. Results reveal that the proposed model is able to capture the structure
    change for serial dependent data
    显示于类别:[統計研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML54检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明