本研究針對14根應用輕質骨材之鋼骨鋼筋混凝土構材承受撓曲、軸力與單向撓曲聯合作用,及軸力與反覆側向力聯合作用時之承載行為,進行一系列的實驗研究,針對骨材單位重、圍束形式、鋼骨比和軸力比之改變,對構材極限強度、韌性、破壞型式與消能能力等行為之影響,進行探討,並與文獻[26]之相同參數常重混凝土SRC構件行為進行比較。研究顯示,以適當的鋼骨量與圍束型式下,對輕質混凝土複合構件可達與常重混能土構件相當之韌性,而在輕質混凝土SRC構件中,改善圍束型式和提高鋼骨量都能有效的提高構件的韌性行為,且鋼骨量的提升使輕質混凝土複合構件之勁度衰減趨於緩和,但以較佳圍束型式對輕質混凝土複合構件之勁度衰減沒有明顯效果。 This study is focused on the experimental investigation of seismic performance of steel reinforced concrete columns (SRC) composed of lightweight aggregate concrete. Specimens with various reinforcement placements were tested under bending and different combinations of bending and axial loads. Test results show that the inelastic behavior of lightweight aggregate concrete SRC members is governed by the steel ratio and the volumetric ratio of the confinements. It is also confirmed from the comparison on energy dissipation capacity that the ductility of lightweight aggregate concrete SRC members with adequate confinements stays at the equivalent level as that of normal weight concrete SRC, which justifies the applicability of lightweight aggregate concrete SRC to engineering practices.