中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89974
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41654579      線上人數 : 2263
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89974


    題名: 基於檢驗數值的糖尿病腎病變預測模型;Prediction Models for Diabetic Nephropathy based on laboratory tests
    作者: 方詩匀;Fang, Shih-Yun
    貢獻者: 資訊工程學系
    關鍵詞: 糖尿病腎病變;慢性腎臟病;深度學習;疾病預測模型
    日期: 2022-08-20
    上傳時間: 2022-10-04 12:06:09 (UTC+8)
    出版者: 國立中央大學
    摘要: 糖尿病為國人最常見慢性病之一,且時常伴隨其他疾病發生。
    其中,糖尿病腎病變便是最常見的併發症中的一種,同時也是高發病率與高死亡率的疾病。
    由於腎臟相關疾病在早期不易察覺,等到患者意識到腎功能衰退時,通常都已經需要依靠血液透析維生。
    如果能在尚未發病的時期,就告知患者未來患病的可能性,或許能讓患者多加留意自己健康狀況。
    對預測結果提供有效的時間資訊是在研究縱向資料很重要的影響因子,
    因此本研究會在現有的實驗室資料上探討不同的時間序資料切割方式對於結果的影響。

    本研究在生化檢測資料上訓練不同架構的機器學習模型,
    包含以樹狀結構為基底的學習模型XGBoot、以tensorflow構造的多層感知機與先以分群演算法來分群各資料點,
    再利用泰勒展開式去逼近資料點的雅各比矩陣學習模型。
    此外,本研究比較多種特徵選取方法並分析特徵對於結果的影響。
    最終,以多層感知機與自選特徵在交叉驗證上的效果最好,準確率與靈敏度分別達到85.7%與85.4%。;Diabetes is one of the most common chronic diseases in Taiwan and is often associated with various complications.
    Among them, diabetic nephropathy is one of the most frequent ones.
    It is also a disease with high morbidity and mortality.
    Because symptoms of kidney-related diseases are usually not readily observable at an early stage,
    most patients are unaware of it until the condition has progressed.
    By the time the kidney damage has already occurred,
    however, it is usually too late, and the patients will need hemodialysis as a treatment method for survival.
    If the patients can be informed of the possibility of the disease beforehand,
    it may allow them to pay more attention to their health conditions.
    In this sense, providing effective temporal information for prediction results is an important influencing factor in the study of longitudinal data.
    Therefore, this study will explore the influence of different time series data processing methods on the results based on the existing laboratory data.

    In this study, machine learning models with different architectures are trained on biochemical data,
    which include the learning model XGBoot that is based on tree structure,
    the multilayer perceptron built by tensorflow,
    and the Jacobian matrix learning model (JMLM).
    In general, JMLM is a more interpretive model compared to other models because it first uses clustering algorithm to group each data point and then uses Taylor series expansion to approximate the data points.
    In addition, this study compares multiple feature selection methods and analyzes the impact of features on the results.
    Ultimately, with the accuracy and sensitivity reaching 0.857 and 0.854, respectively,
    the multi-layer perception and self-selected features have the best effect on cross-validation.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML43檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明