中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89991
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42573055      線上人數 : 1668
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/89991


    題名: 重新思考虛擬記憶體管理的方式以開放通道式固態硬碟最大限度地減少深度學習推薦系統演算法的讀寫流量;Rethinking Virtual Memory Management to Minimize the I/O Traffic of Deep Learning Recommendation Algorithm to Open Channel SSD
    作者: 狄尚弘;Ti, Shang-Hung
    貢獻者: 資訊工程學系
    關鍵詞: 固態硬碟;推薦系統;類神經網路;虛擬記憶體;深度學習;solid state drives;recommendation systems;neural networks;virtual memory;deep learning
    日期: 2022-08-24
    上傳時間: 2022-10-04 12:07:03 (UTC+8)
    出版者: 國立中央大學
    摘要: 由於計算數據的快速增長,基於DRAM的主要存儲裝置無法容納來自數據密集型應用(如機器學習算法和推薦系統)的所有待處理數據。因此,主要存儲裝置和下層存儲設備之間的數據移動導致了一個重要的性能問題。當傳統的基於NAND的固態硬碟(SSD)應用於計算機架構時,性能問題無法得到解決,因為存儲驅動器無法區分來自主機系統的數據類型。然而,一種新型的存儲介質,即開放通道固態硬盤(OCSSD),已經被提出來,提供了一條從主機端系統優化數據在存儲空間上放置的路徑。在這項研究中,我們為一個著名的數據密集型應用(即深度學習推薦系統(DLRM))在OCSSD存儲驅動器上開發了一個新的存取數據模型。我們的解決方案被稱為OC-DLRM,通過I/O單元將經常訪問的數據放在一起,可以最大限度地減少對快閃記憶體的I/O流量。根據我們的實驗結果,與傳統的虛擬內存管理方案相比,OC-DLRM明顯減少了記憶體和存儲設備之間的I/O流量。;Due to the rapid growth of computing data, DRAM-based main memory cannot accommodate all to-be-processed data from data-intensive applications (e.g., machine learning algorithms and recommendation systems). Therefore, data movement between main memory and a storage device results in a significant performance issue. When a traditional NAND-based solid-state drive (SSD) is applied to a computer architecture, the performance issue cannot be tackled because a storage drive cannot distinguish the types of data from the host system. However, a new type storage medium, namely open-channel SSD (OCSSD), has been proposed to provide a path to optimize data placement on the storage space from the host-side system. In this study, we develop a new data access model for a well-known data-intensive application (i.e., deep learning recommendation system (DLRM)) on an OCSSD storage drive. Our solution, called OC-DLRM, can minimize the I/O traffic to the flash memory storage device by considering the I/O unit of a flash memory drive to place the frequently-accessed data together. According to our experimental results, the OC-DLRM significantly decrease the amount of I/O traffic between memory and storage devices, compared with the traditional virtual memory management solution.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML37檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明