English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625338      線上人數 : 1948
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/90020


    題名: 基於影像分割之多語言場景文字字元偵測與語言辨識;Character Spotting and Language Recognition for Multilingual Scene Texts based on Image Segmentation
    作者: 林佳穎;Lin, Chia-Yin
    貢獻者: 資訊工程學系
    關鍵詞: 深度學習;街景文字定位;多語言文本辨識;弱監督式學習;Deep learning;Scene text spotting;semantic segmentation;weakly supervised learning
    日期: 2022-09-19
    上傳時間: 2022-10-04 12:07:59 (UTC+8)
    出版者: 國立中央大學
    摘要: 基於深度學習的自然場景文字分析相關研究在近年來十分盛行,文字
    區域偵測更是其中的重要環節。現今文字偵測大多以字串為標記單位,然而
    字串中可能包含不同語言的文字,標記時較不易確認該字串文字所屬語言。
    本研究提出以字元為單位的偵測方式,不僅能準確標記所屬語言,也讓辨識
    時能採用相對應語言模型以達到更好的效果。對於辨識模型而言,字串需要
    考量不規則的文字走向,且字串辨識模型通常需要較大量的訓練資料與訓
    練時間。反觀字元辨識則不太需要考慮文字走向,訓練模型相對簡單省時,
    且面對多語言自然場景文字時能更有彈性地根據語言特性,選擇適合的辨
    識單位與方法。本研究使用高解析度網路架構,以字元為偵測單位,標記字
    元區域並點出字元中心,且利用多個通道進行語言分類。由於真實資料集字
    元標記的缺乏,我們提出針對字元的弱監督式學習方法,使得網路在缺乏字
    元標記的情況下也能在偵測字元的表現有明顯的效果提升。在多語言分類
    上,不管是偵測後用個別分類器亦或是在偵測的同時進行語言辨識皆有一
    定的效果,驗證了字元辨識的可行性。我們實驗以拉丁文(英數字)、中文、
    日文、韓文為範例,分析本設計的可行性與合理性。
    ;In recent years, scene text analysis based on deep learning techniques draw
    a lot of research attention. Text detection in natural scenes is an important step of
    scene text analysis and most of the existing text detection designs are based on
    string detection. However, a string may contain words of different languages so it
    is not easy to mark the language to which the string belongs accurately. Scene text
    recognition using string-level annotations need to consider the effect of irregular
    orientations and require a lot of training data and training time. Conversely,
    character-based recognition methodologies do not need to consider orientations,
    which simplifies the training processes. Multilingual natural scene text
    recognition may be benefited from the flexibility of selecting suitable recognition
    models according to different language characteristics. In this research, we use a
    high-resolution network architecture to label word regions and point out the
    centers of characters, and also employ multiple channels for substring language
    classification. Due to the lack of character-level annotations in real datasets, we
    propose a weakly supervised learning approach for characters, enabling the
    network to improve the detection of characters significantly. The performance of
    multi-language recognition is verified by using individual classifiers after
    detection or by performing language recognition at the same time. The feasibility
    of the proposed design is verified by showing the character detection of different
    languages, including Latin, Chinese, Japanese, and Korean, as examples.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML65檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明