中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/90042
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41640874      Online Users : 1363
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/90042


    Title: 使用異常偵測原理進行事實查核;Fact Verification Using Out of distribution Detection
    Authors: 紀滎姿;Gi, In-Zu
    Contributors: 資訊工程學系
    Keywords: 事實查核;FEVEROUS;自然語言處理;假新聞;Fact Verification;FEVEROUS;Natural Language Processing;Fake News
    Date: 2022-09-23
    Issue Date: 2022-10-04 12:08:52 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 社群媒體包含多樣且未經過濾的訊息,為了避免傳播未經證實的主張,這使得自動事實查核被迫切需要。自動事實查核旨在考慮特定證據的狀況下,決定主張之真實性。現有方法通常遵循兩種方法,包括基於蘊涵的三元分類方法或典型多類別分類等設置,這兩種方法對於真實情況都有其不足之處。在本文中,我們提出了一種新穎的模型,據我們所知,這是第一個利用異常偵測原理進行事實查核的模型。我們為異常實例設計額外的損失函數,並且成功地使特定類別的學習更加專注。實驗結果顯示我們提出的模型可以表現更佳或具有競爭力的結果,這證明了在兩個基準數據集,FEVEROUS 和 LIAR 資料集上的有效性。;Social media contains diverse and unfiltered information, which makes automatic fact verification in urgent need against the dissemination of unproven claims. Fact Verification aims to assign an authenticity verdict to a claim in particular evidence. Existing approaches usually follow the setting of entailment-based ternary or typical multi-class classification, which are not feasible for realistic scenarios. In this paper, we propose a novel model, which is, to our best knowledge, the first to exploit out-of-distribution detection for fact checking. By incorporating an extra keep-away loss for out-of-distribution instances, we successfully engage the learning with respect to specific categories. Experimental results show our model performs better or competitive results, which demonstrates the effectiveness on two benchmark datasets, the FEVEROUS and LIAR dataset.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML70View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明