中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/90056
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41641104      Online Users : 1370
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/90056


    Title: 一種基於熵加權局部強度聚類的不均勻影像分割模型;An entropy-weighted local intensity clustering-based model for inhomogeneous image segmentation
    Authors: 廖唯廷;Liao, Wei-Ting
    Contributors: 數學系
    Keywords: 影像分割;強度不均勻影像;偏置校正;強度聚類;局部熵;迭代卷積閾值法;image segmentation;intensity inhomogeneity;bias correction;intensity clustering;local entropy;iterative convolution-thresholding scheme
    Date: 2022-07-13
    Issue Date: 2022-10-04 12:09:37 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本文研究一種以熵加權局部強度聚類為基礎的不均勻影像分割模型,用於分割因為採集過程偏置場所產生的強度不均勻影像。該模型最小化一個由分割區域邊界總長度的正則化項和局部熵加權的數據擬合項所組成的能量泛函,其中分割邊界的長度由熱核與分割區域的特徵函數進行卷積來近似,而數據擬合項由偏置場模型與局部強度聚類性質相結合後,再進一步由局部熵加權所產生。最終所得出的熵加權模型可以同時分割影像並估計用於校正強度不均勻影像的偏置場。此外,所考慮的熵加權模型可以應用迭代卷積閾值法有效地實現。最後,我們進行一系列數值實驗以展示所提出方法的有效性與穩健性。;In this thesis, we study an entropy-weighted local intensity clustering-based model for inhomogeneous image segmentation. The intensity inhomogeneity mainly arises from the bias field in improper image acquisition. The considered model minimizes an energy functional consisting of a regularization term for the total length of the segmentation boundary and a data fitting term weighted by local entropy. The total length is approximated by the convolution of the heat kernel and the characteristic functions of the segmentation regions. The data fitting term is generated by combining the bias field model and the local intensity clustering property, further weighted by the local entropy. The model can simultaneously segment the inhomogeneous image and estimate the bias field for image correction. Furthermore, we can efficiently realize the model using an iterative convolution-thresholding scheme. Finally, we conduct many numerical experiments to demonstrate the effectiveness and robustness of the method.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML68View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明