中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/90060
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41640130      Online Users : 1294
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/90060


    Title: Multi-Stage Image Deraining on Embedded Devices
    Authors: 陳柏穎;Chen, Bo-Ying
    Contributors: 資訊工程學系
    Keywords: 圖像去雨;嵌入式設備;多階段;image deraining;embedded device;multi-stage
    Date: 2022-09-28
    Issue Date: 2022-10-04 12:09:45 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 圖像去雨對於自動駕駛系統非常重要,因為這些系統需要清晰的圖像來計算駕駛狀況,例如先進駕駛輔助系統(ADAS)。近期,已經有許多關於圖像去雨的研究工作。但是這些研究都沒有關注影像去雨系統的推理速度。此外,其中大多數的研究都使用合成的下雨圖像來訓練模型,這會造成對真實下雨圖像的泛化性較低。為了解決模型的推理速度,我們提出了輕量級通道注意模塊,並將火模塊引入我們的模型之中,來減少模型中的參數數量。此外,基於相同目的,我們也刪除了一些卷積核過濾器。最後,儘管我們的模型生成的圖像品質較低,但我們部屬在NVIDIA AGX Xavier開發者套件上的模型比基準模型快2.74倍。為了解決模型泛化問題,我們在訓練集中混合了真實和合成的下雨圖像。當我們的模型部署在 NVIDIA 的下一代嵌入式設備 Jetson AGX Orin 開發者套件上時,我們希望我們的模型能夠即時處理去雨(即超過10 FPS)。;Image deraining is essential for autonomous driving systems which may require
    clear images to calculate driving situations, such as ADAS. Recently, many research
    works have been proposed for image deraining. However, none of them focuses on
    the inference speed. In addition, most of them use synthetic raining images to
    train their models, which leads to lower generalization for real raining images. To
    address the inference speed, we propose Lightweight Channel Attention Block and
    introduce fire modules into our model to reduce the number of parameters in the
    model. In addition, several kernel filters are removed from subnetworks for the same
    purpose. At the end, although our model generates deraining images with slightly
    lower quality, our model deployed on NVIDIA AGX Xavier Developer Kit is 2.74
    times faster than the baseline model. To address the model generalization issue,
    we mix the real and synthetic raining images in the training set. We expect that
    the our model can deal with deraining in real-time (i.e., exceeding 10 FPS) when
    our model is deployed on the next generation embedded device of NVIDIA, Jetson
    AGX Orin Developer Kit.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML79View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明