English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625532      線上人數 : 1964
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/90067


    題名: 多作物語義分割的集成模型:水稻和卷心菜;The Ensemble Model for Semantic Segmentation of Multi-crops: Rice and Cabbage
    作者: 蘇吉托;Sugiyarto, Adventus Ridwan Kis
    貢獻者: 資訊工程學系
    關鍵詞: 語義分割;集成模型;UNet;VGG16;semantic segmentation;ensemble model;UNet;VGG16
    日期: 2022-09-30
    上傳時間: 2022-10-04 12:09:54 (UTC+8)
    出版者: 國立中央大學
    摘要: 卷積神經網絡 (CNN) 可用於數字圖像處理,例如語義分割。使用此模型,可以分割航拍圖像以識別地塊中的作物。可以對航拍圖像執行語義分割的 CNN 架構之一是 UNet-VGG16。該架構用於 NCU RSS 1.3 架構中,該架構可以在航拍圖像中分割水稻,就像去年國立中央大學 (NCU) 之前的工作一樣。此外,目前有來自行政院農業委員會 (COA) 的另一種作物的捲心菜數據集,為 NCU 的下一次工作做好準備。

    NCU RSS1.3 可用於訓練模型,該模型可以在航空圖像的包裹中預測水稻或捲心菜的多種作物。然而,集成方法也能夠預測航拍圖像中的作物,因為可以系統地添加新的作物數據集。集成模型將整合每種作物子模型的預測結果。如果新的作物數據集準備好,之前數據集的子模型可能不需要在集成模型中訓練。

    本研究旨在比較一個集成模型基線,該基線將來自每個作物的一個類別的子模型與使用多類作物訓練的單一模型相結合。數據集分為五輪訓練、驗證和測試。 Cohen-Kappa 公式用於找出基本事實,並根據有關背景、大米和捲心菜的基於包裹的信息進行預測。第一個實驗是比較沒有調整減重函數的集成模型和多作物單模型。結果是未調整重量損失函數的集成模型的平均 kappa (0.917) 高於多作物單模型的平均 kappa (0.897)。第二個實驗是比較沒有調整權重損失函數和調整權重損失函數的集成模型。結果是調整權重損失函數的集成模型的平均 kappa (0.953) 高於沒有調整權重損失函數的值。與多作物單模型的 kappa 相比,具有調整權重損失函數的 ensemble 模型的 kappa 有顯著差異。此比較的 Wilcoxon 有符號秩 p 值為 0.035。結論是,在本研究中,具有調整權重損失函數的集成模型比多作物單模型具有更好的性能。這意味著集成模型改進了多作物單模型。;The Convolutional Neural Networks (CNN) can be used in digital image processing, such as semantic segmentation. Using this model, an aerial image can be segmented to identify the crop in the parcel field. One of the CNN architectures that can perform semantic segmentation for aerial images is UNet-VGG16. This architecture is used in the architecture NCU RSS 1.3 which can segment rice in aerial images as in previous work of National Central University (NCU) last year. Furthermore, currently there is a cabbage dataset for another crop from the Council of Agriculture (COA) Executive Yuan that is ready for next NCU’s work.

    The NCU RSS1.3 can be used in training models that can predict multi-crops of rice or cabbage in parcels of aerial images. However, the ensemble approach is also able to predict the crop in the aerial image because new crop datasets may be systematically added. The ensemble model will integrate the prediction outcomes from each crop′s sub-models. If the new crop dataset is ready, the sub-model of the previous dataset may not need to train in the ensemble model.

    This study aims to compare an ensemble model baseline that combines sub-models from one class from each crop with the single model trained with multi-class crops. The dataset is split into train, validation, and test in five rounds. The Cohen-Kappa formula is used to figure out the ground truth and make predictions based on parcel-based information about the background, rice, and cabbage. The first experiment is comparing the ensemble model without tuning weight loss function and the multi-crops single model. The result is the average kappa of the ensemble model without tuning weight loss function (0.917) higher than the average kappa of the multi-crops single model (0.897). The second experiment is comparing the ensemble model without tuning weight loss function and with tuning weight loss function. The result is the average kappa of the ensemble model with tuning weight loss function (0.953) higher than without tuning weight loss function. The kappa of the ensemble model with tuning weight loss function is significantly different compared to the kappa of the multi-crops single model. The Wilcoxon Signed-Rank p-value of this comparison is 0.035. The conclusion is that the ensemble model with tuning weight loss function has better performance than the multi-crops single model in this research. It means that the ensemble model improves the multi-crops single model.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML83檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明