中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/9061
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%)
Visitors : 23036025      Online Users : 376
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/9061


    Title: 從生物文件中萃取出蛋白質或基因之名稱;Extracting protein/gene names from the biological literatures
    Authors: 鄭煜璋;Yu-Chang Cheng
    Contributors: 資訊工程研究所
    Keywords: 自然語言處理;文件探勘;Biomedical Name Entity Extraction;Natural Language Processing;Text Mining
    Date: 2005-07-05
    Issue Date: 2009-09-22 11:40:21 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 近年來生物技術逐漸進步,大型實驗產生相當大量的資料與文件,如何在這些使用自然語言(如英文)的文件中萃取出有用的資訊,使得這些萃取出來的資料可以進一步分析變的越來越重要。 無論我們感興趣的是想從文件中了解生物體內每個環節的交互作用亦或是生物物質的註解,這項研究的第一步就是要先能讓電腦辨識出文件中,我們感興趣的物質名稱。這個研究即是在生物文件中,辨識出所有蛋白質的名稱。我們提出了一個系統來辨識出蛋白質或基因的名稱。這個系統主要依據人造的規則,外加機器學習機制讓系統表現的更好。這個系統在這個研究領域有名的文件集Yapex上,達到了F-score 73.8%的水準。 New high-throughput technologies have increased the accumulation of data about genes and proteins. However, such data is stored in natural language text. Further processing and integrating data into more complete and useful knowledge become harder for researchers because of tremendous amount of literature. Therefore, automatic literature mining is more and more important in recent years. The first step to extract knowledge from natural language text is to extract the named entities out of text, and then the relation between named entities can be constructed. Here we propose a new system to extract the named entities (especially named entities refer to proteins or genes) from the literature in biological domain such as MEDLINE abstracts. The system is mainly rule-based and combined with an SVM machine learning module for improving the system performance. It achieves an F-score 73.8% on the Yapex corpus.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat
    0KbUnknown310View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明