English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%)
Visitors : 35313204      Online Users : 1282
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/91003

    Title: 利用深度學習改進水深估計方法的精度與範圍;Improvement of Water Depth Estimation in Error and Range with Deep Learning Algorithms
    Authors: 任玄
    Contributors: 國立中央大學太空及遙測研究中心
    Keywords: 水深估計;卷積神經網路;輻射超解析;葉綠素;海水表面溫度;KD490;東沙環礁;;Bathymetry Estimation;convolution neural network;radiometric super-resolution;sea surface temperature;chlorophyll;KD490;Dongsha atoll
    Date: 2023-07-17
    Issue Date: 2023-07-18 13:50:06 (UTC+8)
    Publisher: 國家科學及技術委員會
    Abstract: 水深、水質及棲地底質資料對航行電子海圖、海洋資源及生態系研究都相當重要。本研究期望可以提高水深估計精度與範圍,目前初步嘗試在水深35公尺內都有良好的相關性。水深精度提高,對水質及棲地底質分類都大有幫助。
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[太空及遙測研究中心] 研究計畫

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明