English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42774065      線上人數 : 1215
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/91963


    題名: 利用蓋亞 DR3 星表研究球狀星團的 CMD 並利用機器學習作型態上的分類;Study CMD of Globular Clusters using Gaia DR3 data and classify them according to their morphology using Machine Learning
    作者: 謝庫馬;Sharma, Bishnu Kumar
    貢獻者: 天文研究所
    關鍵詞: 球狀星團;色溫-星等圖;機器學習;Globular Cluster;Color-magnitude diagram;Machine learning
    日期: 2023-06-08
    上傳時間: 2024-09-19 14:44:05 (UTC+8)
    出版者: 國立中央大學
    摘要: 指導教授:饒兆聰 博士
    中 華 民 國 一一二 年 六 月
    利用蓋亞DR3星表研究球狀星團的色溫-星等圖,
    並利用機器學習作型態上的分類
    摘 要
    球狀星團是年老與貧金屬恆星,聚集在一個球狀區域。因為球狀星團是最古老的天體之一,研究它們的有助於了解其物性與化性和宇宙的演化史。在我們研究工作的第一部分,使用蓋亞星表為幾個系內球狀星團建構色溫-星等圖。方法為利用Vizier,查詢個別球狀星團的位置、固有運動與光度來建構色溫-星等圖。我們再根據不同準則,篩選成員恆星並排除離異。最終在150個球狀星團中,我們選擇與建構57組色溫-星等圖。在轉換成標準星等方面,是使用距離模數與消光修正。我們的目標是依據色溫-星等圖中主序星、紅巨星與水平分支的屬性,再用機器學習對球狀星團分類並研究之。我們再用TensorFlow與Keras建立與訓練神經網路。之後用ML模型作影像分類,K-mean群集對相似的球狀星團分類。在研究不同組球狀星團的年齡與金屬豐度後,最終找到5個年齡與金屬性非常相似的球狀星團。

    關鍵字: 球狀星團、色溫-星等圖、機器學習
    ;Study CMD of Globular Clusters using Gaia DR3
    data and classify them according to their morphology
    using Machine Learning
    by
    Bishnu Kumar Sharma
    Submitted to the Graduate Institute of Astronomy
    in the partial fulfillment of the
    requirement for the degree of Master of Astronomy
    Abstract
    Globular clusters are the agglomeration of the old and metal-poor stars into a
    spherical shape. Since they are one of the oldest stellar objects, their study can
    help us understand the physical and chemical structure as well as the evolution of the universe. As the first part of our research, we use Gaia DR3 data
    to construct color-magnitude diagrams (CMDs) for the Galactic globular clusters (GCs). We use various information like position, proper motion, and photometry of the individual GC and we extract the data using the VizieR Queries
    (astroquery.vizier) to construct CMD. We use different selection criteria to select member stars and to remove outliers. Using our selection criteria, among
    150 GCs, we are able to get 57 CMDs with proper morphology. Standardization
    of magnitudes to absolute magnitude has been done using distance modulus
    and extinction correction from Schlegal, Flinkbeiner, and Davis. Our aim is to
    classify the GCs based on CMD morphology such as main-sequence, red-giant,
    and horizontal branches using a pure machine learning approach and study the
    properties of the individual groups. We use TensorFlow, a framework to build
    a neural network along with Keras, a high-level API for building and training
    neural networks. We make an ML model for image classification and use Kmeans clustering for making groups of similar images. By superimposing the
    CMDs of individual groups, and making them one CMD, we studied the properties like age, distance, metallicity, etc of individual clusters of a group. We find
    5 groups having nearly similar ages and metallicities and we consider we get 5
    GCs groups as twins.
    Keywords: Globular clusters, Color-magnitude diagram, Machine learning
    Thesis Supervisor: Chow-Choong Ngeow
    Title: Associate Professor
    顯示於類別:[天文研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML28檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明