中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/92116
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41639863      Online Users : 1268
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/92116


    Title: 金屬有機骨架材料包覆植物乳桿菌B21之研究;The Study on the Encapsulation of Lactiplantibacillus plantarum B21 into Metal-Organic Frameworks
    Authors: 鄭彥朋;Zheng, Yan-Peng
    Contributors: 化學學系
    Keywords: 金屬有機骨架;植物乳桿菌;Metal-Organic Frameworks;Lactiplantibacillus plantarum
    Date: 2024-01-24
    Issue Date: 2024-09-19 14:50:42 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 益生菌是一類對人體健康產生正面積極影響的微生物,主要存在於人體腸道,對維護腸道菌群平衡和促進消化系統正常功能至關重要。益生菌可以通過補充人體腸道中缺乏的有益菌種,幫助防止有害細菌的生長,提高免疫力,並促進營養物質的吸收。此外,益生菌還被認為對改善腸道健康、緩解腸道炎症、調節情緒和提升整體健康有著積極的作用。其擁有相當大的潛在開發能力,被當今科學家致力於研究治療或改善不同疾病的可能性。由於市面上的益生菌都是藉由包埋技術於益生菌本體外層提供保護,而包埋層的成分組成為聚合物或大分子,為了抵禦各加工流程及胃消化道對於益生菌本體的侵害,必須以五至七層包埋層來實現較為完善之保護效果,然而隨包埋層過多,人體無法順利完全溶解包埋層使益生菌無法精準於腸道環境作用,且攝取過多不必要添加物等致命問題浮出檯面,讓我們想到可以運用本實驗室的研究專長-金屬有機骨架材料(MOFs)來取代且改善,達到既能提供益生菌所需保護且能精準於腸道作用的包覆材料。
    金屬有機骨架材料(MOFs),可藉由調整金屬離子與有機配體,根據需求調整其孔洞性質、比表面積、化學穩定性等,具有相當的多樣性,因此近期常被應用於與生物系統結合之研究。本研究欲形成抗UV且耐酸不耐鹼之複合材料,其目的為在UV照射以滅除雜菌、有毒之微生物之加工程序中保護目標菌體,且順利通過胃消化道後可以於微鹼性之腸道環境將益生菌釋放作用,故選用本實驗室已畢業的李東學長發現具備吸收UV特性之ZIF-90以及從多種耐酸之MOFs中對植物乳桿菌B21生物毒性友好之MOF-808作為本研究材料,對兩種材料先各別包覆植物乳桿菌B21,分別探討成效為何。
    本研究藉由本實驗室於2015年發表於JACS利用類沸石咪唑骨架材料-90 (ZIF-90) 封裝酵素之技術,以及本實驗室於2023年發表於JMCA利用機械力化學法將酵素快速的封裝於類沸石咪唑骨架材料-90(ZIF-90)之技術,成功合成出微米級ZIF-90封裝植物乳桿菌B21 (B21@ZIF-90),兩者合成出的材料都是以一包一單晶封裝的形式存在,被包覆的植物乳桿菌B21都有不錯的存活率,且ZIF-90能提供良好的抗紫外線能力,使植物乳桿菌B21免於紫外線的殺菌效果。同時致力於研究耐酸材料MOF-808以多晶形成包覆在植物乳桿菌B21周圍,是否能提供保護,使複合材料中的植物乳桿菌B21免於受到酸性環境之侵害,對於未來應用於用MOFs保護益生菌之可行性,優化包埋技術之缺陷,期待未來能有更大的突破及發展。
    ;Probiotics are a category of microorganisms that exert positive and beneficial effects on human health, primarily residing in the human gastrointestinal tract. Their presence is crucial for maintaining the balance of intestinal flora and promoting the normal functioning of the digestive system. Probiotics work by supplementing beneficial bacterial strains lacking in the human gut, aiding in preventing the growth of harmful bacteria, boosting immunity, and facilitating the absorption of nutrients. Additionally, probiotics are believed to play a positive role in improving gut health, alleviating intestinal inflammation, regulating emotions, and enhancing overall well-being. They possess significant potential for development, with today′s scientists actively researching their potential in treating or improving various diseases. Commercially available probiotics typically utilize encapsulation techniques to provide protection for the probiotic core. The encapsulation layer is composed of polymers or large molecules to withstand various processing steps and the challenges of gastric digestion. Achieving a more comprehensive protective effect often requires five to seven layers of encapsulation. However, excessive encapsulation layers hinder the complete dissolution of the protective coating in the human body, preventing probiotics from precisely functioning in the intestinal environment. Moreover, issues such as the intake of unnecessary additives become apparent with excessive encapsulation. In light of these challenges, our laboratory envisions utilizing our research expertise in Metal-Organic Framework materials (MOFs) to replace and enhance the current encapsulation materials. This innovative approach aims to provide the necessary protection for probiotics while ensuring precise functionality in the intestinal environment. This may address the limitations associated with excessive encapsulation layers and the intake of unnecessary additives, presenting a promising avenue for advancing probiotic applications.
    Metal-Organic Framework materials (MOFs) can be tailored by adjusting metal ions and organic ligands to meet specific requirements, modifying their porous properties, surface area, chemical stability, and more. Due to their considerable diversity, MOFs have recently found applications in studies involving integration with biological systems. In this research, we aim to develop composite materials resistant to UV radiation and acid but not alkali. The objective is to protect target bacteria during processing procedures that involve UV exposure for eradicating contaminants and toxic microorganisms. After successfully passing through the gastric digestive system, the material should release probiotics in a slightly alkaline intestinal environment. For this purpose, we have selected ZIF-90, discovered by our former graduate student, Dong Lee, which possesses UV-absorbing properties. Additionally, we have chosen MOF-808 from various acid-resistant MOFs, known for its biocompatibility with Lactobacillus plantarum B21. Both materials will be separately employed to encapsulate Lactobacillus plantarum B21, and the efficacy of each will be investigated.
    This research builds upon our laboratory′s 2015 publication in JACS, showcasing the technique of enzyme encapsulation using zeolitic imidazolate framework-90 (ZIF-90). Additionally, our 2023 publication in JMCA presents a method utilizing a mechanochemical approach to rapidly encapsulate enzymes in ZIF-90. We have successfully synthesized micrometer-sized ZIF-90 encapsulated with Lactiplantibacillus plantarum B21 (B21@ZIF-90). Both materials were synthesized in a one-particle-one-crystal encapsulation form, ensuring a high survival rate of the encapsulated B21. ZIF-90 demonstrated excellent UV resistance, protecting B21 from UV-induced sterilization effects. Simultaneously, our focus lies in the research of acid-resistant material MOF-808, forming a polycrystalline coating around B21. This study aims to assess whether this coating provides protection, preventing the encapsulated B21 in the composite material from being compromised by acidic environments. The feasibility of using MOFs to safeguard probiotics is being explored, with efforts directed towards optimizing the encapsulation technique and addressing any inherent limitations. We anticipate significant breakthroughs and further development in the future application of MOFs for probiotic protection.
    Appears in Collections:[Graduate Institute of Chemistry] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML15View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明