中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/92220
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42410479      Online Users : 1454
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/92220


    Title: 以深度神經網路預測客戶終身價值;Applying DNN to Predict Customer Lifetime Value
    Authors: 陳伊婷;Chen, Yi-Ting
    Contributors: 企業管理學系
    Keywords: 深度神經網路;顧客生命週期價值;離群值處理;CLV預測;Deep Neural Networks;Customer Lifetime Value (CLV);CLV prediction
    Date: 2023-07-04
    Issue Date: 2024-09-19 15:23:26 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 顧客生命週期價值(CLV)是衡量顧客對企業長期價值的重要指標。本研究以新鮮食品超市為例,利用深度神經網絡(DNN)模型來預測常客的CLV。通過對超市一年的消費數據進行預處理和特徵選擇,我們採用DNN與Elastic Net回歸相結合的模型,並使用移除離群值的方法來提高預測準確性。我們比較了不同預測期間的預測結果,並發現使用兩個月的消費數據來預測未來五個月的CLV效果最好。此外,我們還研究了各個特徵對CLV的重要性,並發現消費金額、月份、消費頻率以及不同類別購買金額比例對CLV有顯著影響。如果將來有更長時間範圍的數據集,我們可以嘗試去除季節因素,以預測超過一年的CLV。;This research paper explores the application of Deep Neural Networks (DNN) in predicting Customer Lifetime Value (CLV) for regular customers in fresh food supermarkets. Real transaction data spanning 11 months is analyzed, and various data preprocessing techniques, outlier handling methods, and algorithms are compared to develop an accurate CLV prediction model. The findings highlight the importance of outlier removal and feature selection, with the combination of DNN and Elastic Net regression demonstrating the best performance. The study also identifies the optimal forecasting period. The research provides practical insights for businesses seeking to improve CLV forecasts and showcases the potential of DNN in CLV prediction across industries. Overall, this work contributes to advancing CLV prediction methodologies and offers a framework for enhancing accuracy in predicting CLV for regular customers in fresh food supermarkets.
    Appears in Collections:[Graduate Institute of Business Administration] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML27View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明