摘要: | 本研究透過模擬室內辦公室環境光源,探討不同情境照明對受試者的生理、心理與專注力影響。透過基因演算法擬合不同晝夜節律刺激值(circadian stimulus, CS)與不同色溫(correlated color temperature, CCT)之照明情境,並且延續先前實驗團隊之照明人因評估技術,召募受試者進行心理物理學實驗,模擬辦公室環境,瞭解照明對使用者專注力與生心理影響。 本實驗設計六種光源情境光譜,共進行兩個照明實驗。實驗一固定色溫4000 K,調變三種不同CS值0.27、0.32、0.37;實驗二固定CS值0.36,改變三種不同色溫3000 K、4000 K、5000 K。實驗量測上,使用NeuroSky腦波儀進行測量與記錄受試者於照明情境下進行閱讀工作、閉眼休息的腦波訊號進行後續分析。實驗分析在時頻域上使用了經驗模態分解法(empirical mode decomposition, EMD)、希爾伯特轉換(Hilbert transform, HT)、機率密度函數(probability density function, PDF)以及接收者操作特徵曲線(receiver operating characteristic curve, ROC curve)進行運算;時域上使用喬治亞理工學院開發之Blink演算法去除腦波中眨眼訊號,再透過Higuchi method計算碎形維度(fractal dimension)。客觀指標上,使用作答總題數、正確率與接收者操作特徵曲線的曲線下面積(area under the curve, AUC);主觀指標則是以主觀問卷所得的評分作為標準。最終將實驗結果匯入SPSS統計軟體進行變異數分析,從分析中了解在照明情境間所使用的指標是否具顯著差異,以此探討照明對使用者的影響。 主觀指標而言,問卷結果顯示,在照明亮暗程度上情境四(色溫3000 K、CS值0.36)對比情境六(色溫5000 K、CS值0.36)具有顯著差異,受試者在不同色溫的情境下,高色溫的照明將帶來更亮的感受;客觀指標而言,受試者在不同照明情境下,其閱讀工作與閉眼休息的腦波狀態分類上並無顯著差異;閱讀工作時的腦波在不同情境間同樣沒有顯著差異;而情境六高色溫之照明情境下,受試者作答題數較多,表示在此實驗設計下,高色溫之照明光源較容易使受試者更為專注進行閱讀工作。
關鍵字:照明、專注力、晝夜節律刺激、腦電圖、希爾伯特轉換、接收者操作特徵曲線、碎形維度;By simulating indoor office lighting environments, this research explores the physiological, psychological, and concentration effects on users under different lighting conditions. Using a genetic algorithm, the study fits various circadian stimulus (CS) values and correlated color temperatures (CCTs) for lighting scenarios. The experiment inherits the procedures designed in the team previously. Participants are recruited for psychophysical experiments in simulated office environments to investigate the impact of lighting on users’ concentration and psychophysiology. The experiment involves designing six lighting scenarios with different spectra and conducting two lighting experiments. Experiment one involves a fixed color temperature of 4000 K with varying CS values (0.27, 0.32, 0.37), while experiment two maintains a constant CS value of 0.36 and alters color temperatures (3000 K, 4000 K, 5000 K). Measurement-wise, NeuroSky EEG headsets are used to record brainwave signals during reading and closed-eye rest activities under different lighting scenarios. The collected data are then analyzed by employing empirical mode decomposition (EMD), Hilbert transform (HT), probability density function (PDF), and receiver operating characteristic curve (ROC curve) methods in the time-frequency domain. In the time domain, the Blink algorithm is utilized to remove eye-blink artifacts from the EEG signals and then fractal dimensions are computed by the Higuchi method. Objective indicators include total questions answered, accuracy, and area under the curve (AUC) of the ROC curve, while subjective indicators rely on scores from questionnaires. Finally, the experimental results are imported into the SPSS statistical software for analysis of variance (ANOVA) to understand if there are significant differences in the indicators between lighting scenarios and to explore the impact of lighting on users. In terms of subjective indicators, questionnaire results show a significant difference in brightness perception between lighting scenario four (CCT 3000 K, CS 0.36) and six (CCT 5000 K, CS 0.36). Participants perceive higher color temperature lighting as brighter in different CCT scenarios. Regarding objective indicators, there are no significant differences between brainwaves of working and resting states under different lighting scenarios. Concentration levels during reading tasks do not differ significantly between scenarios. However, in scenario six with higher correlated color temperature, participants answer more questions, indicating that within this experimental design, lighting with higher correlated color temperature may enhance users’ concentration for reading tasks.
Keywords: Lighting, concentration, circadian stimulus, EEG, Hilbert transform, receiver operating characteristic curve, fractal dimension |