中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/92820
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41077011      在线人数 : 1084
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/92820


    题名: Q學習結合監督式學習在股票市場的應用;Application of Q-learning combined with supervised learning in the stock market
    作者: 簡豪新;Chien, Hao-Hsin
    贡献者: 統計研究所
    关键词: 投資策略;Q學習;監督式學習;Investment strategy;Q-Learning;Supervised Learning
    日期: 2023-07-26
    上传时间: 2024-09-19 16:20:47 (UTC+8)
    出版者: 國立中央大學
    摘要: Q-learning 是一種強化學習算法,通過使用歷史股價數據作為環境反饋來學習最優投資決策。 監督學習可用於通過股票價格相關特徵來訓練未來股票價格的狀態分類模型。 本研究提出了一種基於Q-learning的投資策略,並結合監督學習對未來股價趨勢進行分類,以定義Qlearning過程中所需的狀態輸入值。最後,將所提出的方法應用於台灣上市股票以評估其運營績效。 數值結果表明,該方法在考慮交易費用的情況下具有良好的盈利表現。;Q-learning is a reinforcement learning algorithm that learns optimal investment decisions by using historical stock price data as feedback from the environment. Supervised learning can be applied to train a state classification model for future stock prices via stock price-related features. This study proposes an investment strategy based on Q-learning, and combines supervised learning to classify future stock price trends to define the state input values required in the Qlearning process. Finally, the proposed method is applied to Taiwan′s listed stocks to evaluate its perational performance. The numerical results show that the proposed method has a good profit performance under the consideration of transaction fees.
    显示于类别:[統計研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML12检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明