中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93049
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41688508      Online Users : 1431
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/93049


    Title: 應用擴增因果規則探勘於學生畢業後成果與在校歷程之關聯分析;Graduated Student Achievement And Learning Portfolio Analysis With Dimension Expanding Causal Rule Mining
    Authors: 黃鉦淩;Huang, Cheng-Ling
    Contributors: 資訊工程學系
    Keywords: 資料探勘;校務研究;關聯規則探勘;漸進式演算法;Data Mining;Institutional Research;Association rule Mining;Incremental Algorithms
    Date: 2023-07-11
    Issue Date: 2024-09-19 16:39:28 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 校務研究在近幾年已經成為許多學校的主要研究方向,目的是為了提
    高學校本身的績效。雖然校務研究已經執行多年,對於小範圍議題之分析
    已經很普遍,但對整體高教的探索性研究還尚未形成一個共識,以至於議
    題的研究選擇重複性很高。其中造成議題重複性很高的原因為資料的缺
    乏,在有限的欄位下,能探討的議題就極其有限,因此,為了達成廣泛的
    探索性研究,需要大量的資料欄位來輔助,才能逐步擴大議題來分析,達
    到廣泛探索之目的。
    本研究模擬資料欄位擴增的情形,開發漸進式演算法應用於欄位擴增
    的資料來降低時間成本,同時針對新加入的欄位,挖掘新舊欄位之間的關
    聯,試圖尋找出新的欄位是否對於舊欄位之間的關聯產生影響,以及新舊
    欄位尚未交互前無法挖掘出的關聯。藉由廣泛的探索資料的關聯來提供決
    策者分析,達成決策支援。
    ;Institutional research has become a major research direction for many
    schools to improve the school’s performance in recent years. Although
    Institutional research has been conducted for many years, analysis of small-scale
    issues is already common, but the exploratory research on higher education as a
    whole has not yet reached a consensus, so that the research selection of issues is
    highly repetitive. One of the reasons for this issues of repetition is the lack of
    data, and the limited number of attributes that can be explored with limited
    fields makes it extremely limited. Therefore, in order to achieve extensive
    exploratory research, a large number of data attributes are needed to assist in
    expanding the scope of analysis and achieve the goal of extensive exploration.
    This paper simulates the situation of expanding data attributes, develops
    algorithms applied to data attributes expansion to reduce time costs. In addition,
    for these expanding data attributes, trying to identify whether they have an
    impact on the correlations between old attributes, as well as correlations that
    cannot be identified before the interaction between expanding attributes and old
    attributes. Through extensive exploration of data correlations, decision-makers
    can be provided with analysis and achieve decision support.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML7View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明