中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/93060
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41651637      在线人数 : 1520
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93060


    题名: SILP: Enhancing Skin Lesion Classification using Swin Transformer with Spatial Interaction and Local Perception Modules
    作者: 周裕惠;Zhou, Yu-Hui
    贡献者: 資訊工程學系
    关键词: 皮膚癌;醫學影像;影像分類;視覺轉換器;skin lesion;medical imaging;image classification;vision transformer
    日期: 2023-07-13
    上传时间: 2024-09-19 16:40:08 (UTC+8)
    出版者: 國立中央大學
    摘要: 由於紫外線和全球環境因素的變化,全球各地患有皮膚病的病患數量有日益增加的情況。在某些地區,因為其相對來說有限的醫療資源,因此,對於各項皮膚病的診斷仍是一大未知的挑戰。然而,未經正確醫治的皮膚病可能會發展為皮膚癌,所以,在此情況下,則迫切需要一個高效、準確且易於使用的系統來識別可疑病變。儘管目前存在許多皮膚病分類模型,但在準確性等評估指標上仍有改進的空間。為了提高皮膚病分類的準確性,本研究提出了名為SILP的新分類系統,該影像分類系統引入了兩個模塊:本地感知模塊和空間交互模塊。除此之外,我們也對激活函數進行了修改,以改進訓練時間和準確性。在實驗方面,主要通過在兩個公開的皮膚病資料及上進行實驗,以此來評估了SILP的性能。根據實驗結果顯示,SILP不僅在準確性方面比最先進的皮膚病分類模型還要好之外,在其他評估指標上也表現的十分亮眼。;Because of the harmful effects of ultraviolet rays and global environmental factors, the number of patients with skin lesions is increasing. If left untreated, skin lesions may lead to skin cancer. However, limited access to specialized medical care remains a challenge in certain regions. Therefore, there is an urgent need for an efficient, accurate, and accessible tool to identify suspicious lesions. Although there are many classification models for skin lesions, there is still room for improvement in terms of accuracy. To enhance the accuracy of skin lesion classification, a novel system named SILP is proposed in this study. There are two modules in SILP: the Local Perception Module and the Spatial Interaction Module. Additionally, we have modified the activation function to improve both training time and accuracy. SILP, along with several other models, has been tested on two public skin lesion datasets. The results demonstrate that our proposed system outperforms the state-of-the-art skin lesion classification model, not only in terms of accuracy but also in various other evaluation metrics.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML11检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明