English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119332      線上人數 : 1316
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93502


    題名: 在有限決策時間下的雲端機器學習計算工 作排程總完工時間最佳化策略研究;Optimization Strategy for Makespan of ML-Task Scheduling on the Cloud with the Constraint of Scheduling Decision Time
    作者: 張峻瑋;Chang, Chun-Wei
    貢獻者: 資訊工程學系
    關鍵詞: 雲端;機器學習工作;總完工時間最佳化;快速排程策略;Cloud Computing;ML-Task Scheduling;Scheduling Decision Time;Makespan
    日期: 2023-10-20
    上傳時間: 2024-09-19 17:09:35 (UTC+8)
    出版者: 國立中央大學
    摘要: 由於機器學習的技術不斷的進步,任務對於雲端群集的需求逐漸增加,這些資源密集型的任務需要更多的計算資源來支持,更多的計算資源和任務就表示對於資源分配要有更好的處理。對於阿里巴巴所提出的模擬器,它是利用貪婪演算法進行任務排程,因為貪婪演算法存在著一些缺點,因此本論文提出以Min-Min演算法和Max-Min演算法以動態任務分配的方式來改善貪婪演算法的缺點。另外,所提出之排程演算法因具有高時間複雜度,這對於大規模分散式系統的任務排程造成了挑戰,所以提出了將任務已更小的單位切割任務資料集後再進行排程。實驗結果表明,Min-Min演算和Max-Min演算法之於阿里巴巴所提出的模擬器結果在任務的 Makespan 有良好的表現,而在切割任務後的結果來看也有良好的表現。;Due to the continuous advancements in machine learning technology, there is a growing demand for tasks in cloud clusters. These resource-intensive tasks require more computational resources to support them. More tasks and computational resources imply a need for improved resource allocation. In the case of the simulator proposed by Alibaba, it utilizes a greedy algorithm for task scheduling. However, since greedy algorithms have their limitations, this paper suggests enhancing the drawbacks of the greedy algorithm by employing the Min-Min and Max-Min algorithms with dynamic task allocation.

    Furthermore, the scheduling algorithms introduced here present a challenge due to their high time complexity, especially in the context of task scheduling in large-scale distributed systems. Therefore, it is proposed to break down the task dataset into smaller units for scheduling. Experimental results indicate that both the Min Min and Max-Min algorithms perform well in terms of the Makespan of tasks in Alibaba′s simulator. Moreover, when considering the results after task partitioning, these algorithms still demonstrate excellent performance.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML40檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明