摘要: | 隨著人類工業不斷地發展,化石燃料 的燃燒 越發頻繁導致溫室氣體加劇排放, 這 是 氣候變化的 主 要原因。 根據聯合國氣候變化政府間專家委員會( IPCC)的 第 三次 評估報告指出,若再不 針對溫室氣體排放 採取防制措施,到了 2100年全球 平均地面氣溫將比 1990年增加 1.4 5.8 。為了減緩溫室效應,需要開發新的 清潔能源,利用反向電透析( RED)系統從河、海水中提取的鹽度梯度能的發展 潛力巨大, 理論上,每立方公尺的海水與河水之間可產生 0.8 kWh的電能 。影響 RED發電能力的因素有很多,離子交換膜、河海水濃度及流速、電解液濃度及種 類等等皆會對 RED發電能力有影響。 本研究旨 在 RED系統中對氯化鐵 -氯化亞鐵、鐵氰化鉀 -亞鐵氰化鉀及氯化 鈉,三種不同的電解液在不同操作條件下對 RED系統的發電能力的比較,並探 討在發電量維持在高水準之下能使用氧化還原系統氧化水中氨氮的能力 。 對氯化 鐵及鐵氰化鉀而言,電解液濃度越高產出的電流密度越高,其中鐵氰化鉀最高能 產出 0.17 W/m2電流密度。氯化鈉由於不是氧化還原對,因此不適合作為電解液。 在 RED中以氯化鈉去除氨氮的途徑是形成 活性氯,間接氧化氨氮,其效果 受到氯離子及氨氮濃度影響,氯離子濃度越高氨氮濃度越低去除率越高,在本研 究中氨氮去除率在 1 M氯化鈉及 50 ppm氨氮下去除率達到最高 95%。而鐵氰化 鉀處理氨氮效果不好,這可能是因為氧化機制是由電極直接氧化氨氮,因此在本 研究中的結果無法得出一個較令人信服的規律。所有氧化氨氮後檢測出的硝酸鹽 氮濃度皆低於 1 ppm,可知本研究中氨氮大部分是氧化成氮氣,沒有過氧化成硝 酸鹽氮。;With the continuous development of human industry, the burning of fossil fuels has become more frequent, resulting in increased emissions of greenhouse gases, which is the main cause of climate change. According to the third assessment report of the United Nations Intergovernmental Panel on Climate Change (IPCC), if no control measures are taken against greenhouse gas emissions, the global average surface temperature will increase by 1.4-5.8°C by 2100 compared to 1990. In order to slow down the greenhouse effect, it is necessary to develop new clean energy sources. The development potential of salinity gradient energy extracted from rivers and seawater by reverse electrodialysis (RED) system is huge. In theory, the difference between seawater and river water per cubic meter Generates 0.8 kWh of electrical energy. There are many factors that affect the power generation capacity of RED. The ion exchange membrane, the concentration and flow rate of sea water in the river, the concentration and type of electrolyte, etc. will all have an impact on the power generation capacity of RED. This study aims to compare the power generation capacity of the RED system with three different electrolytes, ferric chloride-ferrous chloride, potassium ferricyanide-potassium ferrocyanide and sodium chloride, under different operating conditions. , and explore the ability to use the redox system to oxidize ammonia nitrogen in water when the power generation is maintained at a high level. For ferric chloride and potassium ferricyanide, the higher the electrolyte concentration, the higher the output current density, and the highest output current density of potassium ferricyanide is 0.17 W/m2. Sodium chloride is not suitable as an electrolyte because it is not a redox couple. The way to remove ammonia nitrogen with sodium chloride in RED is to form active chlorine and indirectly oxidize ammonia nitrogen. The effect is affected by the concentration of chloride ions and ammonia nitrogen. The higher the concentration of chloride ions, the lower the concentration of ammonia nitrogen, the higher the removal rate. The removal rate reaches a maximum of 95% at 1 M sodium chloride and 50 ppm ammonia nitrogen. Potassium ferricyanide is not effective in treating ammonia nitrogen, which may be because the oxidation mechanism is direct oxidation of ammonia nitrogen by the electrode, so the results in this study cannot draw a more convincing rule. The concentration of nitrate nitrogen detected after the oxidation of ammonia nitrogen was all lower than 1 ppm. It can be seen that most of the ammonia nitrogen in this study was oxidized to nitrogen gas, and there was no peroxidation to nitrate nitrogen. |