本研究目的為改良YOLOv7物件偵測模型於小物件偵測之能力。本研究總整前人於YOLOv4、YOLOv5等模型上的提升方法,包含調整模型輸出、更改骨幹結構、使用CBAM注意力機制模組、以K-means++聚類算法計算錨框以及使用無錨框檢測頭的改良方法。將上述方法與綜合應用提出各種改動後,本研究使用了回收玻璃的資料集訓練這些改動模型,並且進行結果的分析與討論。根據結果,本研究發現於小物件偵測時使用K-means++聚類算法來計算錨框之結果較差。最佳的組合是調整了backbone與輸出,同時加入了CBAM模組與使用了無錨框檢測頭的模型。相較於初始的YOLOv7模型,本研究提出的改良模型能成功將測試資料的mAP數值提升8.7%。本研究對小物件偵測的數種改善方法實際測試並提出相應理由,並成功的提升YOLOv7於小物件的偵測能力。;The purpose of this study is to improve the capability of the object detection model YOLOv7 in detecting small objects. The study integrates previous enhancement methods used in models of YOLOv4 and YOLOv5, including adjusting the model output, modifying the backbone structure, incorporating the CBAM attention mechanism module, using the K-means++ clustering algorithm to calculate anchor boxes, and employing the Anchor-Free Detection Head for anchor-less detection. By applying and combining these methods, the study trained the modified models using a dataset of recycled glass and conducted an analysis and discussion of the results. Based on the findings, the study observed that using the K-means++ clustering algorithm for anchor box calculation yielded inferior results in small object detection. The optimal combination involved adjusting the backbone and output, incorporating the CBAM module, and utilizing the anchor-free detection head. Compared to the original YOLOv7 model, the modified model in this study successfully increased the mAP value by 8.7%. The study practically tested and provided corresponding justifications for several improvement methods in small object detection, effectively enhancing the detection YOLOv7 capability for small objects.