English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42841597      線上人數 : 1112
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93804


    題名: YOLOv7 模型於小物件檢測之改良與應用;Application of Improved YOLOv7 on Small Object Detection
    作者: 周彥廷;Chou, Yen-Ting
    貢獻者: 機械工程學系
    關鍵詞: YOLOv7;Small Object Detection;K-means++;CBAM;Anchor Free Detection Head
    日期: 2023-07-27
    上傳時間: 2024-09-19 17:38:46 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究目的為改良YOLOv7物件偵測模型於小物件偵測之能力。本研究總整前人於YOLOv4、YOLOv5等模型上的提升方法,包含調整模型輸出、更改骨幹結構、使用CBAM注意力機制模組、以K-means++聚類算法計算錨框以及使用無錨框檢測頭的改良方法。將上述方法與綜合應用提出各種改動後,本研究使用了回收玻璃的資料集訓練這些改動模型,並且進行結果的分析與討論。根據結果,本研究發現於小物件偵測時使用K-means++聚類算法來計算錨框之結果較差。最佳的組合是調整了backbone與輸出,同時加入了CBAM模組與使用了無錨框檢測頭的模型。相較於初始的YOLOv7模型,本研究提出的改良模型能成功將測試資料的mAP數值提升8.7%。本研究對小物件偵測的數種改善方法實際測試並提出相應理由,並成功的提升YOLOv7於小物件的偵測能力。;The purpose of this study is to improve the capability of the object detection model YOLOv7 in detecting small objects. The study integrates previous enhancement methods used in models of YOLOv4 and YOLOv5, including adjusting the model output, modifying the backbone structure, incorporating the CBAM attention mechanism module, using the K-means++ clustering algorithm to calculate anchor boxes, and employing the Anchor-Free Detection Head for anchor-less detection. By applying and combining these methods, the study trained the modified models using a dataset of recycled glass and conducted an analysis and discussion of the results. Based on the findings, the study observed that using the K-means++ clustering algorithm for anchor box calculation yielded inferior results in small object detection. The optimal combination involved adjusting the backbone and output, incorporating the CBAM module, and utilizing the anchor-free detection head. Compared to the original YOLOv7 model, the modified model in this study successfully increased the mAP value by 8.7%. The study practically tested and provided corresponding justifications for several improvement methods in small object detection, effectively enhancing the detection YOLOv7 capability for small objects.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML29檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明