English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 40302987      線上人數 : 529
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/94628


    題名: 苯並噻二唑 (BT)及二噻吩並吡咯並苯並噻二唑 (DTPBT)衍生物之電洞傳輸層材料開發
    作者: 洪庭鈞;Hung, Ting-Chun
    貢獻者: 化學學系
    關鍵詞: 電洞傳輸材料;鈣鈦礦太陽能電池;HTMs;Perovskite Solar Cell
    日期: 2024-06-28
    上傳時間: 2024-10-09 15:20:32 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究主要以苯並噻二唑 (benzothiadiazole,BT)和二噻吩並吡咯並苯並噻二唑 (DTPBT)單元為核心,開發數種有機光電材料,應用於錫鈣鈦礦太陽能電池 (Sn-PSC)。
    本論文第一系列研究中,核心選用BT及其硝化衍生物 (BTN),並於兩端修飾噻吩或硒吩以延長π共軛,製備三環結構。其中引入強拉電子基NO2可提升分子內電荷轉移能力,並通過結構上的孤電子對鈍化鈣鈦礦層缺陷。隨後,在三環核心兩端修飾推電子基三苯胺 (triphenylamine,TPA),開發三種D-π-A-π-D之電洞傳輸材料:DSpBTN-2D (1)、DTBT-2D (2)、DSpBT-2D (3),並與先前開發之DTBTN-2D一同比較。其中,DTBTN-2D與DSpBTN-2D (1)的初步效率分別為6.2%和5.6%,而未硝化的DTBT-2D (2)效率僅2%。
    第二系列研究中,核心選用五併環結構DTPBT。此稠環分子具有高平面性,使分子間的π-π堆疊更強,進而提升電荷傳輸能力。隨後,在核心一端修飾推電子基三苯胺,另一端以噻吩延長π共軛,並連接錨定基團丙二腈、氰基乙酸、氰甲基磷酸二乙酯和磷酸,開發五種電洞傳輸材料:DTPBT-MN (4)、DTPBT-CA (5)、DTPBT-PE (6)、DTPBT-PA (7)以及未延伸共軛之材料DTPBT*-CA (8)。此系列材料以自組裝 (self-assembly)方式製成元件,目前元件優化中。
    上述材料皆已完成NMR和質譜的結構鑒定,並利用UV-Vis和DPV探討光學及電化學性質。此外,透過DSC和TGA分析證實這些材料具有高熱穩定性。目前,這些有機電洞傳輸材料正在進行相關元件測試,期望能展現出優異的效能表現。
    ;A series of novel organic optoelectronic materials based on benzothiadiazole (BT) and dithienobenzothiadiazole (DTPBT) were developed and applied in tin-based perovskite solar cells (Sn-PSCs).
    In the first series, three newly developed hole-transporting materials DSpBTN-2D (1), DTBT-2D (2), and DSpBT-2D (3) were synthesized by using BT and BTN as cores to attached thiophene (T) or selenophene (Sp), and functionalized with triphenylamine (TPA) as an electron-donating group. Incorporating nitro units (NO2) with benzothiadiazole enhances intramolecular charge transfer and passivates defects on the perovskite layer. These hole-transporting materials were applied in tin-based perovskite solar cells. Initial tests results showed that DTBTN-2D and DSpBTN-2D (1) achieved efficiencies of 6.2% and 5.6%, respectively, while the nitro-deficient DTBT-2D (2) achieved only 2%.
    In the second series of studies, five self-assembled monolayers (SAMs) were developed using the five fused ring molecule DTPBT as the core. The high planarity fused ring structure enhances intermolecular π-π interaction and improves charge transport performance. An electron-donating triphenylamine (TPA) group was modified at one end of the core, while the other end was extended with thiophene to increase the π-conjugation. Additionally, anchoring groups such as malononitrile (MN), cyanoacetic acid (CA), diethyl (cyanomethyl)phosphonate (PE), and phosphonic acid (PA) were attached. Five materials were successfully synthesized: DTPBT-MN (4), DTPBT-CA (5), DTPBT-PE (6), DTPBT-PA (7), and DTPBT*-CA (8) without extended π-conjugation. These materials were fabricated into devices using self-assembly process, and currently are under device fabrication optimization.
    Two series of hole-transporting materials were characterized by NMR and mass spectrometry, and their optical and electrochemical properties were examined using UV-Vis and DPV techniques. Additionally, DSC and TGA analyses confirmed the high thermal stability of these materials. Currently, these organic optoelectronic materials are under optimization for relevant device testing, expected to demonstrate outstanding performance.
    顯示於類別:[化學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML10檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明