English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 40301176      線上人數 : 573
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/94645


    題名: 共晶凝膠的設計與製造:新興離子軟材料邁向永續應變感測器;Design and Fabrication of Eutectogels: Emerging Ionic Soft Materials Toward Sustainable Strain Sensors
    作者: 武忠孝;Vo, Trung Hieu
    貢獻者: 化學工程與材料工程學系
    關鍵詞: 共晶凝膠;應變感測器;聚合物凝膠;3D 列印具;低共熔溶劑;polymer gels;strain sensor;microgels;3D Printing;deep eutectic solvents
    日期: 2024-07-15
    上傳時間: 2024-10-09 15:21:09 (UTC+8)
    出版者: 國立中央大學
    摘要: 戴式感測器,特別是直接黏附在人體皮膚上、用於精確動態監測人體運動和生理訊號的應變感測器,已經經歷了快速發展,並在現代醫療系統中展示了顯著的實用性。 穿戴式感測器的開發需要具有卓越柔韌性的材料,而聚合物凝膠已顯示出巨大的潛力。 聚合物凝膠被定義為在溶劑中膨脹的交聯聚合物的三維 (3D) 網路。 凝膠的特性很大程度上取決於所使用的溶劑,因為它是主要成分。 在這種背景下,低共熔溶劑(DES)已成為水、離子液體和有機溶劑的導電、可生物降解、經濟高效且無毒的替代品,用於製造聚合物凝膠。
    透過利用DES的優勢特性,共熔凝膠(聚合物和DES的複合材料)已針對各種應用進行了廣泛的研究,特別是在應變感測器中。在本論文中,我們開發了多種共熔凝膠,包括化學和物理類型,每種都具有獨特的性能,適用於應變感測應用。本論文包括四篇論文:
    第一章:利用深共晶溶劑中的堵塞微凝膠開發可持續且經濟高效的墨水,用於3D列印具有拉伸結構的應變感測器。
    本章介紹了利用微凝膠和低共熔溶劑(DES)開發的一種環保、低成本的3D列印墨水,適用於直接墨水書寫技術。3D列印墨水可用於製造各種結構,尤其是拉伸框架。與薄膜共析凝膠相比,具有拉伸結構的共析凝膠可以有效地充當應變感測器,透過增強皮膚舒適度和透氣性來檢測人體運動。
    第二章:微凝膠誘導的晶域調控,一步製備具有優異可回收性的物理共熔凝膠。
    本章介紹了一種透過一步製造過程獲得的物理共熔凝膠,其僅使用綠色且低成本的材料,包括微凝膠、聚乙烯醇(PVA)和DES。這歸因於PVA晶域在DES內的均勻分散,由PVA和Carbopol之間的氫鍵和空間限制效應促進。此外,具有可回收性的物理共析凝膠可持續產生電阻訊號,凸顯了其作為可靠應變感測器的潛力。
    第 三 章:一步、無添加劑製造高拉伸性和超堅韌的物理共熔凝膠。
    本章介紹了一種使用部分水解的PVA代替完全水解的PVA,以一步製備高度可拉伸且超堅韌的物理共析凝膠的方法。這種物理共熔凝膠僅含有PVA和DES,具有出色的機械性能,包括6.8 MPa的拉伸強度、高達2420%的應變的拉伸性以及122.3 MJ/m³的超高韌性。它還具有0.15 S/m的良好離子電導率,在各種人體運動中持續產生可靠的電阻訊號,展示了其在應變感測方面的有效性。
    第四章:基於超高分子量聚合物的功能性共熔凝膠:低共熔溶劑中的物理纏結。
    本章介紹了基於超高分子量聚乙烯吡咯烷酮(PVP)在DES中的纏結,開發出的物理共析凝膠。纏結的共構凝膠具有出色的拉伸性,應變達到1410%,並產生可靠的電阻訊號,非常適合應變感測應用。此外,除了具有高黏合強度外,纏結共析凝膠還具有透過聚合物鏈的擴散和重新纏結實現的自修復能力。
    ;Wearable sensors, particularly strain sensors that adhere directly to human skin for precise and dynamic monitoring of human motion and physiological signals, have undergone rapid development and demonstrated significant utility in modern medical systems. The development of wearable sensors necessitates materials with exceptional flexibility, a requirement for which polymeric gels have shown significant potential. Polymer gels are defined as three-dimensional (3D) networks of cross-linked polymers that swell in solvents. The properties of gels depend highly on the solvent used, as it constitutes a major component. In this context, deep eutectic solvents (DESs) have emerged as conductive, biodegradable, cost-effective, and non-toxic alternatives to water, ionic liquids, and organic solvents for fabricating polymer gels.
    By harnessing the advantageous properties of DESs, eutectogels—composites of polymers and DESs—have undergone extensive research for diverse applications, notably in strain sensors. Within this thesis, a diverse range of eutectogels, encompassing both chemical and physical types, each possessing unique properties, has been developed for implementation in strain sensing applications. This thesis encompasses four papers:
    Chapter 1: Developing Sustainable and Cost-Effective Inks from Jammed Microgels in Deep Eutectic Solvents for 3D Printing of Strain Sensors with Auxetic Structures
    A green and low-cost 3D printing ink suitable for the direct ink writing technique has been developed using microgels and DES. The 3D printing ink can be used to fabricate various structures, especially auxetic frameworks. In contrast to a thin-film structure, the eutectogel with auxetic structures serves effectively as a strain sensor, detecting human motion with enhanced skin comfort and breathability.
    Chapter 2: Microgel-Induced Regulation of Crystalline Domains toward the One-step Fabrication of Physical Eutectogels with Excellent Recyclability
    The physical eutectogel is obtained through a one-step fabrication process using only green and low-cost materials, which include Carbopol (microgel), polyvinyl alcohol (PVA), and DES. This is attributed to the uniform dispersion of PVA crystalline domains within the DES, facilitated by the hydrogen bonds and space restriction effects between PVA and Carbopol. Furthermore, the recyclable physical eutectogel can consistently generate electrical resistance signals, highlighting its potential as a reliable strain sensor.
    Chapter 3: One-step, Additive-free Fabrication of Highly Stretchable and Ultra-Tough Physical Eutectogels
    A highly stretchable and ultra-tough physical eutectogel is fabricated in a single step using partially hydrolyzed PVA instead of fully hydrolyzed PVA. The physical eutectogel, containg only PVA and DES, exhibits outstanding mechanical properties, including a tensile strength of 6.8 MPa, stretchability of up to 2420% strain, and ultra-high toughness of 122.3 MJ/m³. It also exhibits good ionic conductivity, at 0.15 S/m, and consistently produces reliable resistance signals over a variety of human movements, showcasing its effectiveness in strain sensing.
    Chapter 4: Functional Eutectogel Based on Ultrahigh-Molecular-Weight Polymers: Physical Entanglements in Deep Eutectic Solvents
    A physical eutectogel is developed based on the entanglements of ultra-high molecular weight polyvinylpyrrolidone (PVP) in DES. The entangled eutectogel showcases outstanding stretchability, reaching 1410% strain, and produces a dependable resistance signal, ideal for strain-sensing applications. Additionally, alongside its high adhesive strength, the entangled eutectogel demonstrates self-healing capabilities, enabled by the diffusion and re-entanglement of polymer chains.
    顯示於類別:[化學工程與材料工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML4檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明