English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75982/75982 (100%)
Visitors : 28181881      Online Users : 212
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/9522

    Title: 即時的駕駛昏睡偵測和注意力監控系統;A Real-Time Driver Drowsiness Detection and Alertness Monitor System
    Authors: 林士銘;Shi-Ming Lin
    Contributors: 資訊工程研究所
    Date: 2007-06-29
    Issue Date: 2009-09-22 11:49:36 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 近年來,交通意外事故頻繁;九成以上的肇事都是人為因素所導 致。在本論文中,我們提出了一個駕駛昏睡和注意力的監控系統分析駕 駛的精神況狀,其中我們偵測了駕駛的眼睛的開/閉、臉部的方向、與視 線的方向。 本系統主要分成七個部份:主動光源取像設備、眼睛偵測、眼睛追 蹤、臉部偵測、臉部方向估計、視線方向估計、和駕駛注意力判定。為 了可以在不同光源環境下正確的偵測和追蹤駕駛的眼睛,我們使用紅外 線打光取像設備來擷取駕駛的眼睛和臉部影像。之後,我們擷取可能的 眼睛區域並用支援向量機 (Support Vector Machine, SVM) 來偵測所有眼 睛區塊;最後經由一些驗證條件找出一雙眼睛,並且根據眼睛位置找出 臉部範圍。在連續三張影像偵測成功後,進入追蹤模式。在追蹤模式中, 我們使用了三階段的追蹤測試,第一階段在預測的區域內做眼睛偵測; 如果第一階段失敗,則進入第二階段用支援向量機驗證的方式追蹤;如 果第二階段也失敗,則會在我們原先所找到的臉部區域中重新搜尋眼睛。 我們在不同的光源環境下測試我們的系統;例如,夜晚或車內。從 實驗的結果中我們可以看到,我們的系統可以在不同光源環境下正確的 偵測和追蹤駕駛的眼睛位置,並且正確找出臉部範圍。最後可以正確的 分析駕駛的臉部方向、視線方向、和昏睡狀況。 Recently, the issue of driver assistance for safety becomes more attractive. In this thesis, we propose a computer vision system for monitoring the driver’s vigilance. The proposed system consists of seven parts: (1) developing an active image acquisition equipment, (2) eye detection, (3) eye tracking, (4) face detection , (5) face orientation estimation, (6) gaze estimation, (7) vigilance decision. In order to deal with various ambient light conditions, we utilize an IR camera equipped with an active IR illuminator to extract several visual cues such as close/open, eyelid movement, gaze direction, and face direction. A probabilistic model is developed to measure human fatigue and to determine fatigue based on the visual cues. At first, we get face images in the same background and illumination by utilizing Iterative thresholding to find out the location of brighter pixels. Second, we can obtain the positions of the eyes by the Connected-component generation. According to the location of the pupil, we can clip the eye region to be verified by the SVM (support vector machine) method. then if there are a fixed numbers of image frames succeeded in detection mode, we can turn the procedure to tracking mode. In the experiments, the proposed approaches are evaluated by several different light conditions such at day and night. From the experiment results, we find that the proposed approach can stably detect or track the eyes in real time.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明