English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43987941      線上人數 : 1364
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95268


    題名: SNF效應的理論解釋和高影響力聚類特徵的識別;Theoretical Explanation of the SNF Effects and Identification of High-Impact Clustering Features
    作者: 陸彥廷;Lu, Yen-Ting
    貢獻者: 統計研究所
    關鍵詞: 聚類;融合;高維度資訊準則;多元邏輯迴歸;clustering;fusion;high-dimensional information criterion;multinomial logistic regression
    日期: 2024-07-10
    上傳時間: 2024-10-09 16:36:50 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究從兩個角度討論高維度資料聚類。首先,我們從理論上解釋了相似網絡融合(SNF)對聚類的影響。人們發現,SNF 透過融合從不同特徵集計算出的相似性矩陣,可以增強許多應用中的聚類性能。所提出的理論解釋有助於更深入地理解融合的功能及其限制。接下來,我們提出了一個由多元邏輯迴歸和高維度資訊標準組成的迭代過程(以 SF-MLR 表示),以從大量特徵集中識別高影響力的聚類特徵。我們將SF-MLR 應用於幾個高維度資料集。數值結果表明,SF-MLR 可以識別高影響力的聚類特徵,這也有助於提高聚類性能。;This study discusses high-dimensional data clustering from two perspectives. First, we provide a theoretical explanation of the effect of similarity network fusion (SNF) on clustering. The SNF has been found to enhance clustering performances in many applications by fusing the similarity matrices computed from different feature sets. The proposed theoretical explanation helps a deeper understanding of how the fusion functions and where its limitations are. Next, we propose an iterative procedure consisting of multinomial logistic regression and high-dimensional information criterion, denoted by SF-MLR, to identify high-impact clustering features from a vast feature set. We apply the SF-MLR to several high-dimensional datasets. The numerical results reveal that the SF-MLR can identify high-impact clustering features, which also helps to improve clustering performances.
    顯示於類別:[統計研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML94檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明