中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95312
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41646756      Online Users : 2296
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95312


    Title: 基於聯邦式學習的U-Net肺結節分割性能優化研究;Research on optimization of U-Net pulmonary nodule segmentataion performance based on federated learning
    Authors: 許子麒;Hsu, Tzu-Chi
    Contributors: 通訊工程學系
    Keywords: U-Net;深度學習;聯邦式學習;醫學影像;數據不足;U-Net;Deep Learning;Federated Learning;Medical Imaging;Data Scarcity
    Date: 2024-07-15
    Issue Date: 2024-10-09 16:39:04 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近來,隨著深度神經網路技術的快速發展,其在醫療影像領域的應用也日益增多,其中肺結節分割模型訓練就是其中之一,但礙於醫療影像牽涉到個人隱私、合法性,無法彼此共享交流,偏鄉地區醫院的數據量較小,可能導致模型性能在訓練時無法達到最佳化,因此在這樣的前提下採用聯邦學習架構結合本地模型做訓練,會是最適合的選擇。
    聯邦學習是一種新穎的機器學習方法,可以達到實現分散式學習的同時,也維護資料安全性。聯邦學習訓練中,將由伺服器端發送初始化模型給各參與聯邦的客戶端做本地訓練,且各個客戶端使用獨立的本地數據,彼此不共享隱私數據,僅藉由回傳模型訓練權重至伺服器端聚合,更新後的模型權重再回傳給客戶端做訓練,使模型能學習不同數據的多樣性,來提高整體的性能及可靠性。
    本篇論文採用Flower作為模擬環境,並假設兩間不同地理位置的醫院,彼此數據分佈不均,藉由聯邦學習架構所帶來的數據多樣性,來優化最終分割的準確度。
    ;Recent advancements in deep neural network technologies have significantly increased their applications in medical imaging. Nonetheless, the sensitive nature of medical data and legal constraints prevent data sharing, particularly in rural areas where hospitals have limited data availability. This limitation can hinder the optimization of model training. Under these circumstances, federated learning provides an optimal solution by enabling local model training without data exchange, thereby maintaining data privacy.
    Federated learning is a novel machine learning method that facilitates distributed learning while maintaining data security. In this process, a server sends an initial model to federated clients for local training. Each client uses their independent data without sharing private information. They then return their model parameters to the server for aggregation. The updated parameters are redistributed to the clients for further training, enabling the model to learn from diverse data, thus enhancing overall performance and reliability.
    The paper adopts Flower as the simulation environment and assumes two hospitals in different geographical locations, with unevenly distributed data between them. By leveraging the data diversity brought by the federated learning framework, the aim is to optimize the final segmentation accuracy .
    Appears in Collections:[Graduate Institute of Communication Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML44View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明