English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42772977      線上人數 : 1162
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95320


    題名: 融入每日最高或最低價的財務序列數據之改變點偵測;Change-Point Estimation for Financial Time Series Incorporating Daily Highest or Lowest Prices
    作者: 郭柏誼;Kuo, Po-Yi
    貢獻者: 統計研究所
    關鍵詞: 變點;幾何布朗運動;金融時間序列;Change-points;geometric Brownian motion;financial time series
    日期: 2024-07-26
    上傳時間: 2024-10-09 16:39:19 (UTC+8)
    出版者: 國立中央大學
    摘要: 本文介紹一種快速且準確的變點估計方法,在傳統的金融實務上,主要方法通常僅依賴於每日收盤價來偵測結構變化的變點。在本研究中,考慮最高或最低價格的目的是提高參數估計的精確度,從而提高財務分析中識別變點的準確性。假設日內價格遵循幾何布朗運動,我們通過考慮收盤價和最高價,以及收盤價和最低價來提出變點模型。將輪廓似然應用於所提出的模型,我們使用最大似然估計(MLE)來估計參數和變點。通過模擬研究和對標準普爾500指數的實證分析,驗證了該方法的性能,分析的數據涵蓋了三個不同時期:2008年金融危機、2020年新冠疫情以及2022年俄羅斯入侵烏克蘭。此外,我們還分析了比特幣美元在2020年新冠疫情和2022年俄羅斯入侵烏克蘭的表現。;This paper introduces an approach for the rapid and accurate estimation for change-points. Within conventional finance practices, the predominant methodologies typically rely solely on daily closing prices for detecting change-points for structure change. In this study, the consideration of the highest or lowest prices aims to augment the precision of estimation with respect to parameters, consequently enhancing the accuracy of identifying change-points in financial analysis. Assuming that intra-daily price adheres to geometric Brownian motion, we propose change-point models by considering the closing price and the highest price, as well as the closing price and the lowest price. Applying the profile likelihood to the proposed model, we employ maximum likelihood estimation (MLE) to estimate parameters and the change-point. The performance of the methodology is verified by simulation studies and empirical analysis of the S&P 500 across three distinct periods: the 2008 financial crisis, the COVID-19 pandemic in 2020, and the Russian invasion of Ukraine in 2022. Furthermore, we analyze the performance of Bitcoin USD during the COVID-19 pandemic of 2020 and the Russian invasion of Ukraine in 2022.
    顯示於類別:[統計研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML41檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明