中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95654
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41247455      Online Users : 2308
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/95654


    Title: 應用於亮度偏移胚布影像的瑕疵檢測;Defect Detection for Fabric Images with Brightness Distribution Shift
    Authors: 張文京;Chang, Wen-Ching
    Contributors: 資訊工程學系
    Keywords: 異常偵測;影像梯度;亮度分佈偏移;坯布;Anomaly detection;greige fabric;Brightness distribution shift;Image gradient
    Date: 2024-07-27
    Issue Date: 2024-10-09 17:07:35 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究旨在找到一種瑕疵檢測方法,對於計畫委託方工廠紡織的坯布影像具有良
    好的瑕疵檢測能力,該胚布資料集具有具有紋理特徵、亮度域偏移及瑕疵稀缺等特性。
    在工業異常偵測的相關研究中,許多模型的設計基於受限的實驗環境。例如,常用的
    MVTec AD 工業資料集 [1],這個資料集中包含 15 種不同的物件及紋理類別的圖像,
    這些圖像均在相同的拍攝角度、距離及光線條件下拍攝。然而,在工廠實際應用中,
    影像會具有多樣的變異性,可能沒辦法固定角度、距離及光線等變數。此時基於受限
    實驗環境研發出來的模型,當要應用在實際工廠中時,可能會因為這樣的變數,使得
    研究的成果沒辦法完美地轉移到實際應用。待測影像的亮度與模型訓練時的影像不同,
    是工廠應用常遇到的域偏移問題。本研究深度探討胚布紋理資料集中亮度分佈偏移的
    解決方案,提出了一種針對胚布紋理以及亮度域偏移影像的異常偵測方法,達到最先
    進的的異常偵測能力。;In the field of industrial anomaly detection, many models are designed based on con-
    trolled experimental environments. For instance, the widely used MVTec AD industrial
    dataset includes images of 15 different object and texture categories.[1] However, these
    images share the same shooting angle, distance, and stable lighting conditions. In real
    factory applications, images exhibit a greater variety of variations, and models developed
    in restricted experimental settings may not perfectly transfer to practical applications due
    to this variability. One common distribution shift problem encountered in factory settings
    is the difference in brightness between the test images and the training data, as seen in the
    greige fabric images at factory. Therefore, this study aims to find a greige fabric defect
    detection method that maintains high detection performance even when there is a bright-
    ness distribution shift in the test images. We have developed a semi-supervised anomaly
    detection method that can handle brightness domain shifts. This image gradient-based
    semi-supervised anomaly detection approach has shown effective results in detecting de-
    fects in greige fabric and successfully addresses the issue of brightness distribution shift,
    achieving state-of-the-art anomaly detection capabilities.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML26View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明