English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43987368      線上人數 : 1060
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95724


    題名: 物理信息神經網絡求解二維納維-斯托克斯流;Physics-Informed Neural Network Approach for Solving 2D Navier-Stokes Flows
    作者: 陳宗興;Chen, Tsung-Hsing
    貢獻者: 數學系
    關鍵詞: 物理信息神經網絡;納維-斯托克斯流;泰勒-格林渦旋;Physics-Informed Neural Network;Navier-Stokes Flows;Taylor-Green vortex
    日期: 2024-07-10
    上傳時間: 2024-10-09 17:12:09 (UTC+8)
    出版者: 國立中央大學
    摘要: 在本論文中,我們提出了一種修改的投影方法,利用物理信息神經網絡來求解不可壓縮的納維-斯托克斯方程。我們首先應用有限差分法結合投影方法來解決泰勒-格林渦旋,並將結果與解析解進行比較。我們的結果表明,該方法能夠以二階收斂速率準確預測泰勒-格林渦旋的流動和壓力場。隨後,我們使用結合投影方法的物理信息神經網絡來解決泰勒-格林渦旋。然而,我們的實驗結果表明,直接使用投影法會導致速度場的預測結果較差。為了解決這個問題,我們提出了一種修改的投影方法,同時求解流體函數和勢函數,並通過流體函數來更新速度場。我們的數值結果表明,這種方法能夠在方形、橢圓形和L形區域中準確預測泰勒-格林渦旋的流動和壓力場。;In this thesis, we propose a modified projection method for solving the incompressible Navier-Stokes equations using physics-informed neural networks (PINNs). We begin by applying the finite difference method combined with the projection method to solve the Taylor- Green vortex and compare the results with the analytical solution. Our results demonstrate that this approach accurately predicts the flow and pressure fields of the Taylor-Green vortex with a second-order convergence rate. We then use PINNs with the projection method to solve the Taylor-Green vortex. However, our experimental results indicate that, direct usage of the projection method leads to poor prediction results of the velocity field. To address this, we propose a modified projection method that simultaneously solves the stream function and potential function. Our numerical results show that this approach accurately predicts the flow and pressure fields of the Taylor-Green vortex in square, ellptical and L-shaped domains.
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML77檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明