本實驗採用定濃度為氨水、雙氧水和純水混合的濕式氧化溶液來進行多孔矽 內部奈米晶的光致發光光譜藍移,其溶液由於不具有重金屬離子,因此不需進行高溫退火的製程,故不會造成內部多孔矽的破裂,並且保存時間相較於重金屬溶液濕式氧化的情況可保存更久,長達半年以上皆維持高發光強度並且奈米晶發光光譜藍移程度不衰退,並且能夠藉由低溫濕式氧化的方式來使其內部結構具備更高穩定性,且高度提升奈米晶發光強度和奈米晶發光光譜藍移程度,以及表面多孔矽的均勻度極高,並運用在日光燈及 365nm 的 UV 燈照射下產生的光激發光,以肉眼觀察兩者的表面變化,及使用場發射電子顯微鏡(SEM)來觀察試片剖面的多孔矽結構和表面形貌,與能量色散X射線譜(EDS)觀測其氧化前後的表面元素變化和 PL 光譜量測來確認其光致發光光譜的位移程度,並應用此新型濕式氧化製程來呈現在低溫下濕式氧化溶液的效能比常溫以上的情況更為優異之情形。 ;This experiment employs a wet oxidation solution with a fixed concentration ratio of ammonia water,hydrogen peroxide, and deionized water at 1:1:10 to investigate the blue-shift of the photoluminescence (PL) spectrum of porous silicon (pSi) nanocrystals. Since the solution does not contain heavy metal ions, the hightemperature annealing process is not required, thus preventing the fracture of the internal porous silicon structure. The solution also exhibits improved storage stability, maintaining a high luminescence intensity for over six months without significant degradation in the blue-shift of the nanocrystal emission spectrum. The lowtemperature wet oxidation method enhances the structural stability of the internal porous silicon, significantly improving the luminescence intensity and blue-shift of the nanocrystal emission spectrum, as well as the uniformity of the porous silicon surface. The study utilized both natural daylight and 365 nm UV lamp illumination to observe the surface changes of the porous silicon samples. Scanning electron microscopy (SEM) was employed to examine the cross-sectional structure and surface morphology of the porous silicon, while energy-dispersive X-ray spectroscopy (EDS) was used to monitor the changes in surface elemental composition before and after oxidation. Photoluminescence (PL) spectroscopy was conducted to confirm the degree of blue-shift in the emission spectrum. The results demonstrate that the newly developed wet oxidation process exhibits superior performance at lower temperatures compared to conventional high-temperature oxidation methods.