本研究使用鎳發泡材做為金屬多孔流道取代傳統流道應用於陰離子交 換膜水電解器,並探討不同鎳發泡材流場設計對水電解器性能之影響。 本研究第一部分討論不同電解液進料模式、不同製程之觸媒層與不同 陰陽極觸媒載體之組合,再以上述三種條件之最佳組合作為水電解器之實 驗參數進行鎳發泡材金屬多孔流道之研究。經實驗結果,使用陽極單邊進 料、濕式噴塗法製備之商用碳紙、陽極使用鎳發泡材、陰極使用碳紙做為 觸媒之載體,此組合之水電解器性能有最佳表現,電流密度可達 846.8mA/cm2。 本研究第二部分針對不同孔徑大小之鎳發泡材應用於水電解器對其性 能之影響,實驗結果表明,鎳發泡材孔徑增大,有利於電解液與產出之氣 體進出,能有效提高水電解器性能,本研究使用 317μm 之鎳發泡材做為水 電解器內外層金屬多孔流道時有最佳性能,操作於 40 oC、1M KOH 濃度、 電壓 2V 下量測到之電流密度高達 1228.4mA/cm2。;This study investigates the use of nickel foam as a porous metallic flow field, replacing traditional flow fields in anion exchange membrane water electrolyzers (AEMWE), and examines the effects of different nickel foam flow field designs on the performance of the electrolyzer. In the first part of the study, factors affecting the performance of the electrolyzer, aside from the metallic porous flow field, are discussed. These factors include different electrolyte feeding modes, various carbon paper manufacturing processes, and different combinations of anode and cathode catalyst supports. The optimal combination of these three conditions was identified as follows: anode single-side feed mode, commercial carbon paper prepared by wet spraying method, nickel foam as the anode catalyst support, and carbon paper as the cathode catalyst support. This combination yielded the best performance for the electrolyzer, achieving a current density of 846.8 mA/cm². The second part of the study focuses on the impact of different pore sizes of nickel foam on the performance of the electrolyzer. The experimental results showed that using nickel foam with a pore size of 317 μm for both the inner and outer layers of the metallic porous flow field resulted in optimal performance, with a current density of 1816.9 mA/cm² measured at 60°C, 1M KOH concentration, and 2V