English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 40302129      線上人數 : 479
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/96006


    題名: 混氣放電線切割加工 N-Type 單晶碳化矽之研究;Research on N-Type Single Crystal Silicon Carbide Cutting By Using Gas Mixed Wire Electrical Discharge Machining
    作者: 鐘寶諹;YANG, CHENG POH
    貢獻者: 機械工程學系
    關鍵詞: 放電加工;線放電加工;碳化矽晶碇;文丘里效應;Electrical discharge machining;Wire electrical discharge machining;Silicon carbide ingot;Venturi effect
    日期: 2024-08-22
    上傳時間: 2024-10-09 17:29:33 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文針對混氣放電線切割加工 N-Type 單晶碳化矽進行分析與探討,
    並研究不同電源參數、線參數、工件參數及混氣氣泡對加工特性與成果之
    影響度關係,期望開發出高產能且高品質之線放電切割碳化矽製程。本論
    文採用 100μm ,200μm 以及 250μm直徑之黃銅線為線電極,藉由電壓源施加電壓脈衝,SiC 晶圓和單線電極之間會產生放電,加工時將 SiC 晶圓試片浸入去離子水中進行混氣 WEDM 切割,過程中可即時控制加工參數。
    透過各種不同參數反覆進行實驗加工得出較佳參數,再使用其較佳參數進
    行加工。經由單因子的參數加工後,觀察到伺服電壓及進給速率不僅是影
    響切口寬度 (Kerf Loss) ,並接連影響加工速度。以 100μm 之黃銅線已可加工出最小槽寬結果為 106 µm,並於參數調整下可於 38 秒加工 30 mm 長之槽道加工。以類比近似法針對 EDS Line Scan結果所量測之放電表面影響區厚度約為 8μm 以內,最小可達 3μm。經線切割放電加工後所得之表面粗糙度結果為 Ra = 0.4396 µm。在相同加工距離下矽晶圓碇採用混氣放電線切割加工總時間,比之無混氣加工結果以縮減7.8 %的消耗時間達到更快速的完成加工 。接著以相同加工距離下,採用混氣放電線切碳化矽晶圓碇、加工總時間比無混氣加工時間快了 16.46 % 。;In this study, analyzes and discusses the gas-discharge wire cutting processing of N-Type single crystal silicon carbide, and studies the influence of different power supply parameters, wire parameters, workpiece parameters and
    gas-mixed bubbles on the processing characteristics and quality. Our goal is to develop a high-performance, high-yield and high-quality wire discharge cutting silicon carbide process. In this research, uses 100 μm and 200 μm diameter brass wires as wire electrodes. A voltage pulse is applied by a voltage source, and a discharge will occur between the SiC wafer and the single wire electrode. During processing, the SiC wafer test piece are immersed in deionized water and then performed by using a mixture gas WEDM cutting, the processing parameters can be controlled in real time during the process.

    Through repeated experimental processing with various parameters, the optimal parameters are obtained, and then the optimal parameters are used for processing. After single-factor parameter processing, it was observed that the servo voltage and feed rate not only affect the kerf width (Kerf Loss) but also continuously affect the processing speed. The minimum kerf width can be processed with 100 μm brass wire, which is 106 μm. With parameter adjustment, a 30 mm long kerf width can be processed in 38 seconds. The thickness of the discharge surface affected area measured based on the EDS Line Scan results using the analog approximation method is approximately within 8 μm, with a minimum of 3 μm. The surface roughness result obtained after wire cutting EDM is Ra = 0.4396 µm. At the same processing distance, the total processing time of the silicon wafer using mixed gas discharge wire cutting is reduced by 7.8% compared to the result of non-mixed gas processing, achieving faster completion of processing. Then, the silicon carbide wafer was cut using air-mixed discharge wire at the same processing distance, and the total processing time was 16.46% faster than the result of non-mixed gas processing.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML13檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明