本研究利用結構光投影法,執行太陽能電池板背面銀膠與鋁膠塗佈相對高度的三維量測。傳統結構光最常使用正弦條紋結構光投影,並搭配相位移技術以提高三維量測的解析度。在本研究中,除了正弦條紋結構光,我們也以三角條紋結構光投影,並推導三角條紋的四步相位移公式執行三維量測。我們在電腦模擬與實作中探討分析兩種結構光的特性。由於本研究使用數位投影機來投射條紋,因此我們也對CCD相機與投影機的非線性投射取像關係,實作各種校正方法;並提出以分析條紋灰階的方式建立感光分佈曲線,然後由此感光分佈曲線與理想線性感光分佈曲線的關係建立相位誤差補償表,以校正非線性投射取像造成的相位誤差。最後將兩種結構光應用在太陽能電池板背面銀膠與鋁膠塗佈的三維量測上。我們以單片太陽能電池板量測;大小為156mm × 156 mm。影像解析度640 × 480。以三角條紋量測出來的標準差為3.941 μm。以正弦條紋量測出來的標準差為3.007 μm。使用正弦條紋量測較使用三角條紋量測穩定。 In this study, we use structured light to measure Ag-Al pastes on solar cells. Sinusoidal structured light was frequently used as the coding light. In addition to sinusoidal structured light, we use isosceles-triangle structured light in this study. For sinusoidal structured light, we use phase-shifting method to obtain phase information. For triangular structured light, we propose a new triangular 4-step phase-shifting method to acquire phase data. In order to compare the characteristics of the two structured lights, we simulate several error sources associated with the data acquisition process in difference phase computational algorithms. The error sources of the error analyses include the error from : (i) the discreteness of projection light, (ii) the non-liner brightness of the projector, (iii) the quantization of captured images, and (iv) the flash effect of projective light. At last, the two structured lights and phase error compensation are applied in measuring Ag-Al pastes on solar cells. The ploy-silicon solar sell is 156mm × 156mm with image size 640 × 480. The measured standard deviation for the sinusoidal structured light is 3.007?m; the measured standard deviation for the isosceles-triangle structured light is 3.971μm. Sinusoidal structured light has high repeatability.