博碩士論文 93521050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:18.188.211.8
姓名 吳培甄(Pei-Jen Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用氫化非晶矽鍺/矽複層的選擇性氧化形成鍺量子點與鍺量子點金屬-半導體-金屬光偵測器之研製
(Ge Quantum-Dots Formed by Selective Oxidation of a-Si:H/a-SiGe:H Multilayer and Fabrication of Ge Quantum-Dots MSM Photodetectors)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體★ 大面積矽偵測器的製程改良與元件設計
★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的主題是研製鍺量子點及其光偵測器。利用矽鍺合金中的矽與鍺在高溫氧化速率不同,鍺原子會自氧化物釋放出來並埋藏在氧化物與矽鍺合金介面的特性,可製造奈米尺寸的鍺量子點。我們先利用電漿助長化學氣相沉積系統沉積氫化非晶矽鍺薄膜或氫化非晶矽鍺/矽多層膜進行高溫氧化處理,形成鍺量子點並包埋在氧化層內,利用此法所形成的鍺量子點尺寸大小決定於鍺原子釋放與聚集的機制。實驗中,在室溫下量測樣品的陰極激發光頻譜可得到一紫光放射光譜,峰值波長在391 nm (3.1 eV),其光譜峰值波長並不隨著鍺量子點的平均尺寸改變而位移,當量子點的平均尺寸變小時,可觀察到較強的CL強度。
我們亦將製備完成的鍺量子點應用於金屬-半導體-金屬光偵測器的研製,並探討不同指插間隙寬度與金屬電極材料對元件特性的影響。由實驗結果發現,較寬之指插間隙可得到較低之元件暗電流與較高之元件光電流與響應速度;與Ti金屬電極比較,使用Cr金屬電極可有效抑制所量測到的元件暗電流。
摘要(英) Ge-rich quantum-dots embedded in an oxide matrix have been fabricated by oxidizing the as-deposited hydrogenated amorphous Si0.91Ge0.09 layer or hydrogenated amorphous Si/Si0.91Ge0.09 multilayer. The formation of Ge-rich quantum-dots was realized by the Ge atoms’ segregation and agglomeration during thermal oxidation. The cthodoluminescence (CL) spectra for the obtained samples, measured at room-temperature, were within the violet-band and peaked approximately at 3.1 eV (391 nm), which was independent of the average size of Ge quantum-dots, and a higher CL intensity was observed when the average size of Ge quantum-dots decreased.
The metal-semiconductor-metal photodetectors based on Ge quantum-dots have also been fabricated. The effects of finger spacing and metal-electrode materials on characteristics of MSM-PDs with interdigitated electrodes have been studied. The device photo-current increased, dark-current decreased and response speed increased as finger spacing increased. The Cr-electrode could suppress the device dark-current more effectively, as compared with the Ti-electrode.
關鍵字(中) ★ 光偵測器
★ 選擇性氧化
★ 鍺量子點
關鍵字(英) ★ Ge Quantum-Dots
★ Photodetectors
★ Selective Oxidation
論文目次 Chapter 1 Introduction……………………………………………………1
Chapter 2 Motivation and Device Operation Principles……………4
2.1 Motivation………………………………………………………4
2.1.1 Quantum confinement effect………………………………4
2.1.2 Comparison between Ge and Si quantum dots …………6
2.1.3 Formation of Ge quantum dots……………………………6
2.1.4 Effects of Ge concentration ……………………………8
2.2 Operation Principles of MSM-PD……………………………11
2.3 Responsivity……………………………………………………16
2.4 Response Speed…………………………………………………18
Chapter 3 Device Fabrication and Measurement Techniques ………21
3.1 Device Fabrication……………………………………………21
3.2 Measurement Techniques………………………………………29
3.2.1 Energy dispersive spectrometer (EDS)…………………29
3.2.2 Scanning electron microscope (SEM)……………………29
3.2.3 Cathodoluminescence (CL) spectroscopy ………………30
3.2.4 Responsivity…………………………………………………30
3.2.5 Response speed………………………………………………31
Chapter 4 Experimental Results and Discussion………………………34
4.1 Characterization of Ge quantum dots ……………………34
4.1.1 Transmission electron microscopy (TEM)………………34
4.1.2 Energy dispersive spectrometer (EDS)…………………37
4.1.3 Scanning electron microscope (SEM)……………………37
4.1.4 Cathodoluminescence (CL) spectroscopy ………………41
4.2 MSM-PDs based on Ge quantum dots…………………………51
4.2.1 Effects of finger spacing ………………………………51
4.2.2 Effects of metal-electrode materials…………………53
Chapter 5 Conclusion………………………………………………………65
References……………………………………………………………………67
參考文獻 [2]Alexander A. Shklyaev and Masakazu Ichikaw, “Visible photoluminescence of Ge dots embedded in Si/SiO2 matrices,” Appl. Phys. Lett., 80, p.1432, 2002.
[3]Mingziang Wang, Xinfan Huang, Jun Xu, Wei Li, Zhiguo Liu and Kunji Chen, “Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/ SiN superlattices,” Appl. Phys. Lett., 72, p.722, 1998.
[4]G. Allan, C. Delerue, and M Lannoo, “Nature of luminescent surface states of semiconductor nanocrystallites,” Phys. Rev. Lett., 72, p.2961, 1996.
[5]H. Rinnert, M. Vergnat, and A. Burneau “Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix,” J. Appl. Phys. vol. 89, pp.237-243, 2001.
[6]Jasprit Singh, “Electronic and Optoelectronic Properties of Semiconductor Structures,” chap 3, pp.125-127, 2003.
[7]Yoshihito Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum confinement mechanism,” Phys. Rev. B vol. 51, pp.1658 1995.
[8]K. V. Shcheglov, C. M. Yang, K. J. Vahala, and Harry A. Atwater “Electroluminescence and photoluminescence of Ge-implanted Si/SiO2/Si structures,” Appl. Phys. Lett. vol.66, pp. 745-747, 1995.
[9]Jia-Yu Zhang, Yong-Hong Yea and Xi-Lin Tan, ” Electroluminescence and carrier transport of SiO2 film containing different density of Ge nanocrystals,” Appl. Phys. Lett. vol. 74, pp. 2459-2461 1999.
[10]W. K. Choi, Y. W. Ho, S. P. Ng, and V. Ng, “Microstructural and photoluminescence studies of germanium nanocrystals in a amorphous silicon oxide films,” J. Appl. Phys. vol. 89, pp. 2168-2172, 2001.
[11]Zhenhong He, Juu Xu *, Wei Li, Kunji Chen, and Duan Feng, “Crystallization and oxidation process of nc-Ge in a- SiO2 matrix from a-Si:H/a-Ge:H multilayers,” Journal of Non-Crystalline Solids 266-269, pp. 1025-1028, 2000.
[12]P. E. Hellberg, S. L. Zhang, d’Heurle, and C. S. Petersson, “Oxidation of silicon-germanium alloys. I. An experimental study,” J. Appl. Phys. vol. 82, pp.5773-5778, 1997.
[13]P. W. Li, W. M. Liao et al, “Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Appl. Phys. Lett. vol. 83, pp. 4628-4630, 2003.
[14]W. K. Choi, V. Ng, S. P. Ng, and H. H. Thio, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing,” J. Appl. Phys. vol. 86, pp. 1398-1403, 1999.
[15]H. K. Liou, P. Mei, u. Gennser, and E. S. Yang, “Effects of Ge concentration on SiGe oxidation behavior,” Appl. Phys. Lett., vol. 59, pp.1200-1202,1991.
[16]S. M. Sze, “Physics of Semiconductor Device,” John Wiley & Sons, Inc., 2nd ed, Chap 10, p.613, 1985.
[17]Minoru Fujii, Osamu Mamezaki, Shinji Hayashi and Keiichi Yamamoto, “Current transport properties of SiO2 films containing Ge nanocrystals,” J. Appl. Phys. vol. 83, pp. 1507-1512, 1998.
[18]Donald A. Neamen, “Semiconductor Physics and Devices,” Second Edition, The McGraw-Hill Companies, Inc., Chap. 7, pp.284~286, 2001.
[19]A. Selvarajan, K. Shenao, and Vijai K. Traipathi, “Optoelectronics: Technologies and Applications,” Chap. 10, pp. 211~218.
[20]D. H. Austun, “Ultrafast Laser Pulse and Applications,” edited by W. Kalser, Berlin, pp.183, 1988.
[21]Yoshihiko Kanemitsu, Hiroshi Uto, Yasuaki Masumoto and Yoshihito Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett. vol. 61, pp. 2187-2189, 1992.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2006-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明