博碩士論文 93521051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.142.131.42
姓名 黃瀚毅(Han-Yi Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高速氮化鎵發光二極體
(High speed GaN light emitting diode)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究中,針對用於短距離光綠波段(520nm)光纖通訊之高速發光二極體做研究及製作。我們採用阻障層有(barrier)矽(Si)掺雜及無摻雜矽之氮化鎵氮化銦鎵多重量子井(MQW)試片來製作元件,由量測結果發現,阻障層具有矽摻雜之試片製作出來的光、電特性都有明顯的增加。(1)光特性方面,在相同電流操作之下(100mA)阻障層具有矽摻雜比沒有矽摻雜之光輸出功率大了兩倍(150μW vs. 75μW),且光飽和功率也大了三倍(250μW vs. 80μW),(2)電特性方面,在相同電流操作之下(100mA)阻障層具有矽摻雜比沒有矽摻雜之試片調制速度快了三倍(125MHz vs. 45MHz)。我們把原因歸納為使用阻障層具有掺矽雜試片可(1)減少載子遮蔽效應、(2)增加載子侷限效應、(3) 改善材料特性。另ㄧ方面,我們將試片最上層的P-GaN蝕刻掉來達成電流侷限的結構,由量測結果發現,電流侷限確實可以達到增加調制速度(170 MHz),離應用在IEEE-1394 250Mbit/s的通訊傳輸協定上已經不遠了。但相反的,因為電流侷限結構使得電流集中注入在P型金屬下方的主動區,因此發光區域面積等效上就變得很小使得輸出光功率不如我們所預期,這是未來需改進的地方。
摘要(英) We demonstrate a high-speed GaN based Light-Emitting-Diode (LED) at a wavelength of around 520nm for the application to plastic optical fiber (POF) communication. By use of the n-type doping in the GaN barrier layers of the InxGa1-xN/GaN based multiple-quantum-well (MQW), superior performance of modulation-speed (120MHz vs. 40MHz) and output-power to the undoped control under the same bias current has been observed. According to the measured electrical-to-optical (E-O) bandwidths and extracted RC-limited bandwidths of both devices, the superior speed performance can be attributed to (1) Higher electron/hole radiative recombination rate in the n-doped MQW than that of undoped MQW. (2) Higher carrier-screening effect (3) improve InxGa1-xN/GaN based multiple-quantum-well (MQW)material quality. On the other hand, we demonstrated high speed GaN LED with current-confined structure which results of modulation-speed has about 160MHz. The current-confined structure can shorten carrier recombination time efficiently, but the output light intensity was decrease seriously. In the future, we will optimize the current-confined area and light emitting area to achieve high speed and high output power LED for IEEE-1394 250 Mbit/s POF applications.
關鍵字(中) ★ 發光二極體 關鍵字(英) ★ light emitting diode
論文目次 英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅰ
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . Ⅱ
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . Ⅲ
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . Ⅵ
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . Ⅷ
表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . XII
第一章、導論
? 1-1 光纖通訊的歷史. . . . . . . . . . . . . . . . .01
? 1-2光纖通訊架構與原理 . . . . . . . . . . . . . . 02
? 1-3光纖通訊的優點 . . . . . . . . . . . . . . . . .03
? 1-4塑膠光纖之發展趨勢與其應用. . . . . . . . . . . 05
? 1-4-1塑膠光纖之發展趨勢與其應用(研究背景) . .. . . 05
? 1-4-2塑膠光纖損耗及光源. . . . . . . . . . . .... .09
? 1-5光纖通訊的應用. . . . . . . . . . . . . . . . . 11
? 1-6結論及論文架構. . . . . . . . . . . . . . . . .13
第二章、發光二極體之原理介紹與討論
? 2-1發光二極體應用於光纖通訊介紹 . . . . . . . . . . 14
? 2-2發光二極體工作原理. . . . . . . . . . . .. . . . 15
? 2-3應用於塑膠光纖通訊用發光二極體介紹. . . . . . . .18
? 2-4高速發光二極體調制原理. . . . . . . . . . . . . .20
? 2-5高速發光二極體調制限制. . . . . . . . . . . . . 24
第三章、高速氮化鎵發光二極體元件結構及製程
? 3-1高速氮化鎵發光二極體元件結構. . . . . . . . . . . .28
? 3-2氮化鎵發光二極體製作流程. . . . . . . . . . . . . .29
? 3-3氮化鎵發光二極體加入電流侷限製作流程. . . . . . . .38
第四章、高速氮化鎵發光二極體量測結果與討論
? 4-1高速氮化鎵發光二極體之電特性量測 . . . . . . . . .39
? 4-2高速氮化鎵發光二極體之光特性量測. . . . ... . . . .41
? 4-3高速發光二極體加入電流侷限結構之光、電特性量測... .47
第五章、結論與未來發展
? 5-1高速氮化鎵發光二極體之結論與未來發展. . . . . . . .51
參考資料. . . . . . . . . . . . . . . . . . . . . . . . . .53
著作列表. . . . . . . . . . . . . . . . . . . . . . . . . .58
參考文獻 參考資料
[1]http://www.pofeska.com/pofeskae
[2]Present State-of-the-art of Plastic Optical Fiber (POF)Components and Systems© 2004, Plastic Optical Fiber Trade Organization.
[3]新禾Toshiba : http://www.toshiba-taiwan.com
[4]Steele, Robert “High bandwidths for plastic optical fiber”,Laser Focus World,pp.32-34,January 1995.
[5]H.Schopp:”Principles and Applications of the MOST Network” , Meeting of the ITG-Fokusprojektes ITF , Fraukfurt, May11,2001.
[6]Club des Fibres Optiques Plastiques (CFOP)France:”Plastic Optical Fibres-Practical Application”,edited by J.Marcou,John Wiley & Sons,Masson,1997.
[7]O.Ziemann,H.Steinberg,P.E.Zamzow:”NewTechnologies with POF for Automotive and Building application”,Alcatel Kabel , autoelectric GmbH , May 2000.
[8]T. Yoshimura, and Y Koyamada. "Analysis of Transmission Bandwidth characteristicsof SI-POF." POF-2003 proceedings. P 119, September 15-17,2003 in Seattle.Available from Information Gatekeepers, Inc.
[9]L. Blyler, V.R. White, R. Ratagini, and M. Park. "Perfluorinated POF: out of the lab, into the real world." POF-2003 proceedings. P 16, September 15-17,2003 in Seattle.
[10]http://people.deas.harvard.edu/~jones/cscie129/nu_lectures/lecture3%20/lecture_3.html
[11]李世鴻, “半導體工程原理”,p.360,全威圖書有限公司.
[12]S.O.Kasap “Optoelectronics and Photonics Principles and Practices” Pearson press.
[13]E.Fred Schubert “Light-Emitting Diodes” Cambridge university press.
[14]Joseph C.Palais“Fiber Optical Communications” fourth edition.
[15]S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of P-Type GaN Films”,Jpn. J. Appl. Phys. 31,1258 (1992).
[16]M. S. Minsky, M. White, and E. L. Hu,“Room-temperature photoenhanced wet etching of GaN”,Appl. Phys. Lett. 68, 1531 (1996).
[17]C. Youtsey , I. Adesida , L. T. Romano and G. Bulman, “Smooth n-type GaN surfaces by photoenhanced wet etching”,Appl. Phys. Lett. 72, 560 (1997).
[18]J. K. Sheu , Y. K. Su ,G. C. Chi ,W. C. Chen, C. Y. Chen, C. N. Huang,J. M. Hong,Y. C. Yu, C. W. Wang, and E. K. Lin,“The effect of thermal annealing on the Ni/Au contact of p-type GaN”, J. Appl. Phys. 83, 3172 (1998).
[19]Li-Chien Chen, Fu-Rong Chen, Ji-Jung Kai,Li Chang,Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen, and Kwang-Kuo Shih,“Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN ”, J. Appl. Phys. 86, 3826 (1999).
[20]Jin-Kuo Ho , Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen, and Kwang-Kuo Shih, “Low-resistance ohmic contacts to p-type GaN”, Appl. Phys. Lett. 74, 1275 (1999).
[21]Y. Koide,S. Yamasaki, S. Nagai, J. Umezaki, M. Koike and Masanori Murakami,“Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces”, J. Appl. Phys. 81, 1315 (1997).
[22]L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, J. F. Chen, W. C. Lai, C. H. Kuo, C. H. Chen, and J. K. Sheu, “Influence of Si-doping on the Characteristics of InGaN-GaN Multiple Quantum-Well Blue Light-Emitting Diodes,” IEEE Journal of Quantum Electronics, vol. 38, pp. 446-450, May, 2002.
[23]H. Haratizadeh, B. Monemar, P. P. Paskov, J. P. Bergman, B. E. Sernelius, and P. O. Holtz, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Photoluminescence study of Si-doped GaN/Al0.07Ga0.93N multiple quantum wells with different dopant positions” Appl. Phys. Lett., vol. 84, pp. 5071-5073, June, 2004.
[24]M. Akhter, P. Maaskant, B. Roycroft, B. Corbett, P. de Mierry, B. Beaumont and K. Panzer, “200Mbit/s data transmission through 100m of plastic fiber with nitride LEDs,” IEEE Electron. Lett., vol. 38, pp.1457-1458, Nov., 2002.
[25]T. Wang, H. Saeki, T. Shirahama, M. Lachab, and S. Sakai,“Effect of silicon doping on the optical and transport properties of InGaN/GaN multiple-quantum-well structures” Appl. Phys. Lett., vol. 76, pp. 1737-1739, Mar. , 2000.
[26]John S. Minsky, Shigefusa Chichibu, Siegfried B.Fleischer, Amber C. Abare,Jpn. J. Appl. Phys.,vol.37,pp. 1362-1364,1998.
[27]Eunsoon Oh, Cheolsoo Sone, Okhyun Nam, Hyeongsoo Park and Yongjo Park,“Comparison of Si doping effect in optical properties of GaN epilayers and InxGa1–xN quantum wells”Appl. Phys. Lett., vol. 76, pp. 3242-3244, May. , 2000.
[28]Y. D. Jho, J. S. Yahng, E. Oh and D. S. Kim, “Measurement of piezoelectric field and tunneling times in strongly biased InGaN/GaN quantum wells”Appl. Phys. Lett., vol. 79, pp. 1130-1132, Aug. , 2001.
[29]S. Chichibu, T. Azuhata, T. Sota and S. Nakamura,“Spontaneous emission of localized excitons in InGaN single and multiquantum well structures” Appl. Phys. Lett., vol. 69, pp. 4188-4190,Oct. , 1996.
[30]Hiromitsu Kudo, Hiroki Ishibashi, Ruisheng Zheng, Yoichi Yamada, “Recombination dynamics of carriers in an InGaN/AlGaN single-quantum-well light-emitting diode under reverse-bias voltages
”Appl. Phys. Lett., vol. 76, pp. 1546-1548,Mar. ,2000.
[31]L. B. Chang, D. H. Yeh, L. Z. Hsieh, and S. H. Zeng,“Enhanced Modulation rate in platinum-diffused resonant-cavity light-emitting diodes”, Jour. Appl. Phys., vol. 98, 093504,2005.
指導教授 許晉瑋(JIN-WEI SHI) 審核日期 2006-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明