博碩士論文 93521071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.145.43.225
姓名 林美樂(Me-Lei Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 850nm光波段通訊用之高速光二極體
(High speed photodiode at 850nm wavelength regime)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們提出了新穎的分離式傳輸復合行波式光二極體以及最佳化吸光區設計之高速單載子傳輸光二極體,此二種光二極體不但可提升光二極體的輸出功率-頻寬雙重表現,更可解決傳統光二極體在設計上載子傳輸時間、本質電容以及飽和電流三者的抵觸關係。高速光二極體通常追求頻寬與飽和電流的表現,但傳統的光二極體在高功率操作下,會因載子漂移累積,產生空間電荷遮蔽效應,造成嚴重的頻寬限制與輸出功率衰退的缺點。我們針對傳統光二極體所遭遇到的問題,提出了新穎的磊晶結構加以克服。1.分離式傳輸復合光二極體:在傳統pin光二極體的吸光層中,加入一部分的復合中心(低溫成長砷化鎵)與傳輸層(砷化鎵)做組合。和傳統光二極體相比之下,除了將可提高速度與輸出功率表現外,更解決了傳統光二極體在設計上的抵觸問題。2.最佳化吸光區設計之高速單載子傳輸光二極體:在p-type吸光區做最佳化的掺雜濃度設計,使內部感應電場增大,讓電子能以最快速度傳輸,同時兼顧量子效率。此二種元件的成功,可應用在光通訊850nm波段以做為一兆赫波源發射器上的光電導元件,提供作為一穩定的兆赫波源發射器。
摘要(英) In this paper, We demonstrate the high-speed and high-power performance of separated-transport-recombination photodiodes (STR-PDs) under continuous-wave operation. As compared to the control without recombination center, STR-PD has superior bandwidth performance under higher output photocurrent without sacrificing responsivity seriously.
We introduce a GaAs/AlGaAs based Unitraveling Carrier Photodiode (UTC-PD) for a wavelength of around 830nm. There is significant bias and output current dependent bandwidth enhancement phenomena observed with this device. According to our microwave and optical-to-electrical (O-E) measurement results, such distinct phenomena can occur under a much lower current density (0.3mA/μm2 vs. 0.05mA/μm2) than previously reported for InP-InGaAs UTC-PDs. This can be attributed to the self-induced field in the absorption region, made possible due to the optimized p-type doping profile.
論文目次 摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅰ
致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅲ
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅴ
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅶ
表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅹ
第一章、簡介
參考文獻 [1] SATOKI KAWANISHI,MEMBER , IEEE, and MASATOSHI SARUWATARI, MEMBER,IEEE, “A Very Wide-Band Frequency Response Measurement System Using Optical Heterodyne Detection.” IEEE Transactions on Instrumentation and Measurement, VOL. 38, NO. 2, APRIL 1989
[2] J. Zhang, Y. Hong, S.L. Braunstein and K.A. Shore.” Terahertz pulse generation and detection with LT-GaAs photoconductive antenna” IEE Proc. Optoelectron., Vol. 151, No. 2, April 2004
[3] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
[4] K. P. Yang, P. L. Richards and Y. R. Shen, “Generation of Far-Infrared Radiation by Picosecond Light Pulses in LiNbO3,’’ Appl. Phys. Lett. Vol.19, pp320-323 , 1971
[5] EKSPLA: an EKSMA group company
[6] Humphreys, K.; Loughran, J.P.; Gradziel, M.; Lanigan, W.; Ward, T.; Murphy, J.A.; O'Sullivan, C., ”Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,’’ Proc. EMBC, Vol1, 2004 pp. 1302 - 1305, 2004
[7] Pardo, J.R.; Cernicharo, J.; Serabyn, E., “Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications,” IEEE Transactions on Antennas and Propagation, Vol.49, No.12, pp.1683 – 1694, Dec. 2001
[8] Gaidis, M.C.; Pickett, H.M.; Smith, C.D.; Martin, S.C.; Smith, R.P.; Siegel, P.H., “A 2.5-THz receiver front end for spaceborne applications,” IEEE Transactions on Microwave Theory and Techniques, Vol.48, No.4, pp.733 – 739, April 2000
[9] Kirk Steven Giboney, Ph. D. Thesis, University of California at Santa Barbara, 1995
[10] Yi-Jen Chiu, Ph. D. Thesis, University of California at Santa Barbara, 1999
[11]許晉瑋,金屬-半導體-金屬 行波式光偵測器,國立臺灣大學/光電工程學研究所博士論文(2001)
[12] Y.-L. Huang and C.-K. Sun, “Nonlinear saturation behaviors of high-speed p-i-n photodetectors,” J. of Lightwave Techno., vol. 18, pp. 203-212, Feb., 2000.
[13] K. J. Williams, R. D. Esman, and M. Degenais, “Nonlinearities in p-i-n Microwave Photodetectors,” J. of Lightwave Techno., vol. 14, pp. 84-96, Jan., 1996.
[14] S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast Carrier Dynamics in III-V Semiconductors Grown by Molecular-Beam Epitaxy at Very Low Substrate Temperatures,” IEEE J. of Quantum Electronics, vol. 28, pp.2464-2472, 1992.
[15] J. P. Ibbetson, Ph. D. Thesis, University of California at Santa Barbara, 1998.
[16] J.-W. Shi, Y.-H. Chen, K. G. Gan, Y. J. Chiu, John. E. Bowers, M.-C. Tien, T.-M. Liu, and C.-K. Sun, “Nonlinear Behaviors of Low-Temperature-Grown GaAs-Based Photodetectors Around 1.3-μm Telecommunication Wavelength” IEEE Photon. Tech. Lett., vol. 16, pp.242-244, Jan., 2004.
[17] C.-K. Sun, Y.-Hung Chen, J.-W. Shi, Y.-J. Chiu, K. G. Gan, and J. E. Bowers, “Electron relaxation and transport dynamics in low-temperature-grown GaAs under 1eV optical excitation” Appl. Phys. Lett., vol. 83, pp. 911-913, Aug., 2003.
[18]Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi
Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron, vol. 10, pp. 709–727, July/August 2004.
[19] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, IEEE J. of Sel. Topics in Quantum Electronics.10, 709 (2004).
[20] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, (World Scientific, Singapore, 1996),
p. 2.
[21] N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, IEEE Photon. Technol. Lett. 16, 864 (2004)
[22]莊達人, “VLSI製造技術”, 高立圖書公司(1995)
[23] Blue sky Research's Circular Laser DeviceVPSL-0809-150-x-9-C (http://www.clairelasers.com/distribution/bsr/vpsl.shtml)
[24] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, Ja-Yu Lu, Chi-Kuang Sun, and Ci-Liang Pan, IEEE Photon. Technol. Lett. 17,1722 (2005).
[25] K. G. Gan, J.-W. Shi, Y. H. Chen, Y. J. Chiu, C. -K Sun, and John E. Bowers, Appl. Phys. Lett. 80, 4054 (2002).
[26] L. Zheng, X. Zhang, Y. Zeng, S. R. Tatavarti, S. P. Watkins, C. R. Bolognesi, S. Demiguel, and J. C. Campbell, IEEE Photon. Technol. Lett. 17, 651 (2005).
[27] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu “Analytical Modeling of a High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55mm Wavelength,” IEEE Photon. Technol. Lett., vol. 18, pp. 938-940, April, 2006.
[28] M. Achouche, V. Magnin, J. Harari, F. Lelarge, E. Derouin, C. Jany, D. Carpentier, F. Blache, and D. Decoster, IEEE Photon. Technol. Lett. 16, 584 (2004).
[29] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, (World Scientific, Singapore, 1996), p. 2.
[30] N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, IEEE
Photon. Technol. Lett. 16, 864 (2004).
[31]田名峻-高轉換效率之側向入射薄膜式兆赫波發射器,國立臺灣大學/光電工程學研究所博士論文(2003)
[32]F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “A asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett., vol. 13, pp. 845-847, Aug., 2001
[33]S. Demiguel, L. Giraudet, L. Joulaud, J. Decobert, F. Blache, V. Coupe, F. Jorge, P. Pagnod-Rossiaux, E. Boucherez, M. Achouche, and F. Devaux, “Evanescently Coupled Photodiodes Integrating a Double-Stage Taper for 40-Gb/s Applications-Compared Performance With Side-Illuminated Photodiodes,” J. of Lightwave Technol, vol. 20, pp. 2004-2014, Dec., 2002.
[34]S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very High-Responsivity Evanescently Coupled Photodiodes Integrating a Short Planar Multimode Waveguide for High-Speed Applications,” IEEE Photon. Technol. Lett, vol. 15, pp.1761-1763, Dec., 2003
指導教授 許晉瑋(JIN-WEI SHI) 審核日期 2006-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明