博碩士論文 945201109 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.220.239.179
姓名 謝竣傑(Jyun-jie Sie)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
(Implementation of a high-performance steady-state visual evoked potential (SSVEP)-based brain computer interface using frequency and phase encoded flash lights)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面
★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號★ 明暗閃爍視覺誘發電位於遙控器之應用
★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷
★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除★ 智慧型心電圖遠端監控系統
★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測
★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割★ 應用小波編碼於多通道生理訊號傳輸
★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測★ 利用經驗模態分解法於耳鳴病患之腦磁波穩態聽覺誘發磁場萃取
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究開發利用多頻相位編碼之閃光視覺誘發電位(Visual Evoked Potential, VEP)控制的大腦人機界面(Brain Computer Interface, BCI)。我們對空間中不同位置的閃光刺激進行不同頻率與不同相位的編碼,藉由使用者對其視野中央的光刺激會有最大對應視覺誘發電位的特性,我們可以藉由偵測使用者腦波的時序,判斷目前使用者正在注視的光源是哪一個,進一步讓使用者可以利用注視不同的光源,達到按鍵或指令輸入的目的。本系統結合了穩態視覺誘發電位(Steady-State Visual Evoked Potential, SSVEP)與閃爍視覺誘發電位(Flash Visual Evoked Potential, FVEP)的優點,改善了傳統穩態視覺誘發電位腦波人機界面系統(SSVEP-based BCI)通道數不足與閃爍視覺誘發電位腦波人機界面系統(FVEP-based BCI)低傳輸率的缺點。本大腦人機界面目前已經可以讓使用者進行八個按鍵的輸入,並已經可以達到0.52 sec/command的傳輸速度與100%的準確率。
摘要(英) The present study proposes a new visual evoked potential (VEP)-based brain computer interface (BCI). Users gaze at different spatially separated flash channels (FCs) in order to induce visual evoked signals that have temporal sequences corresponding to the gazed FCs, so that the gazed FC can be recognized and the command mapping to the gazed FC can be sent out to achieve control purposes. To achieve distinct flickering sequences among different FCs, we utilized different frequencies and phases to encode the flashing sequences of different FCs. The proposed system provides the high flexibility in expansion of FC number and high information transfer rate (ITR) which are superior to the traditional SSVEP-based and FVEP-based BCIs. In this thesis, we have built an eight-FC system. The command transfer rate and detected accuracy are 0.52 sec/command and 100%, respectively.
關鍵字(中) ★ 多頻相位編碼之閃光視覺誘發電位
★ 大腦人機界面
★ 腦電波
關鍵字(英) ★ brain-computer interface (BCI)
★ frequency and phase encoded flash lights
★ electroencephalography (EEG)
論文目次 中文摘要...............................................I
Abstract..............................................II
致謝.................................................III
目錄..................................................IV
圖目錄................................................VI
第一章 緒論..........................................1
1.1 研究動機與目的............................................1
1.2大腦人機介面系統............................................1
第二章 以視覺誘發電位為基礎的大腦人機介面系統..........3
2.1視覺誘發電位...............................................4
2.2 SSVEP的BCI系統...........................................8
2.3 FVEP的BCI系統...........................................14
第三章 多頻相位編碼的系統與分析方法...................22
3.1多頻相位編碼之閃光視覺誘發電位的BCI系統...................22
3.2多頻相位編碼...............................................24
3.3視覺刺激實現方式...........................................27
3.4相位角分析方法.............................................32
第四章 實驗結果與討論.................................33
4.1相同頻率不同相位的干擾.....................................33
4.2視覺誘發電位與雜訊.........................................37
4.3眼電訊號對多頻相位視覺誘發電位的影響.......................42
4.4頻率對時域相位的干擾.......................................48
4.5多頻相位編碼的平均技術.....................................51
4.6系統的實驗結果.............................................58
第五章 結論與未來展望.................................78
參考文獻..............................................80
參考文獻 [1] J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, and T.M. Vaughan, "Brain-computer interfaces for communication and control," Clin. Neurophysiol., vol. 113, pp. 767-791, 2002.
[2] T.M. Vaughan, W.J. Heetderks, L.J. Trejo, W.Z. Rymer, M. Weinrich, M.M. Moore, A.Kubler, B.H. Dobkin, N. Birbaumer, E. Donchin, E.W. Wolpaw, and J.R. Wolpaw, "Brain-computer interface technology: A review of the second international meeting," IEEE Trans. Rehabil. Eng., vol. 11, pp. 94-109, 2003.
[3] B. Blankertz, K.R. Müller, G. Curio, T.M. Vaughan, G. Schalk, J.R. Wolpaw, A. Schloegl, C. Neuper, G. Pfurtscheller, T. Hinterberger, M. Schroeder, and N. Birbaumer, "The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials," IEEE Trans. Biomed. Eng., vol. 51, pp. 1044-1051, 2004.
[4] S.P. Levine, J.E. Huggins, S.L. BeMent, R.K. Kushwaha, L.A. Schuh, M.M. Rohde, E.A. Passaro, D.A. Ross, K.V. Elisevich, and B.J. Smith, "A direct brain interface based on event-related potentials," IEEE Trans. Rehabil. Eng., vol. 8, pp. 180-185, 2000.
[5] G. Pfurtscheller et al., "Current trends in Graz brain-computer interface (BCI) research," IEEE Trans. Rehab. Eng., vol. 8, pp. 216-219, 2000.
[6] A. Kostov, and M. Polak, "Parallel man-machine training in development of EEG based cursor control," IEEE Trans. Rehab. Eng., vol. 8, pp. 203-205, 2000.
[7] M. Cheng, X.R. Gao, S.K. Gao, and D.F. Xu, "Design and Implementation of a Brain-Computer Interface With High Transfer Rates," IEEE Trans. Biomed. Eng., vol. 49, pp. 1181-1186, 2002.
[8] Y.J. Wang, R.P. Wang, X.R. Gao, B. Hong, and S.K. Gao, "A practical VEP-based brain-computer Interface," IEEE Trans. Rehab. Eng., vol. 14, pp. 234-239, 2006.
[9] P.L. Lee, C.H. Wu, J.C. Hsieh, and Y.T. Wu, "Visual evoked potential actuated brain computer interface: a brain-actuated cursor system," Electronics Letters, vol. 41, 2005.
[10] J.V. Odom, M. Bach, C. Barber, M. Brigell, M.F. Marmor, A.P. Tormene, G.E. Holder, and Vaegan, "Visual evoked potentials standard," Doc. Ophthalmologica, 108, pp. 115-123, 2004.
[11] E.E. Sutter, "The brain response interface: communication through visually-induced electrical brain response," Journal of Microcomputer Applications, vol. 15, pp. 31-45, 1992.
[12] P.R. Kennedy, R.A.E. Bakay, M.M. Moore, K. Adams, and J. Goldwaithe, "Direct control of a computer from the human central nervous system," IEEE Trans. Rehab. Eng., vol. 8, pp. 198-202, 2000.
[13] S.P. Levine et al., "A direct brain interface based on event -related potentials," IEEE Trans. Rehab. Eng., vol. 8, pp. 180-185, 2000.
[14] P.J. Cilliers and A.J.W. Van Der Kouwe, "A VEP-based computer interface for C2-quadriplegics," IEEE Med. Biol. Eng., vol. 15, pp. 1263-1264, 1993.
[15] American Encephalographic Society. Guideline thirteen, " Guidelines for standard electrode position nomenclature," Clin. Neurophysiol., vol. 11, pp. 111-113, 1994.
[16] S.T. Morgan, J.C. Hansen, and S.A. Hillyard, "Selective attention to stimulus location modulates the steady-state visual evoked potential," Proc. Nat. Acad. Sci. USA, vol. 93, pp. 4770-4774, 1996.
[17] D. Regan, Human Brain Electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine. North Holland, The Netherlands: Elsevier, 1987.
[18] M. Middendorf, G. McMillan, G. Calhoun, and K.S. Jones, "Brain-computer interfaces based on the steady-state visual-evoked response," IEEE Trans. Rehab. Eng., vol. 8, pp. 211-214, 2000.
[19] G.R. Müller-Putz, R. Scherer, C. Brauneis, and G. Pfurtscheller, "Steady-state visual evoked potential (SSVEP) -Based communication: Impact of harmonic frequency components," Journal of Neural Engineering, vol. 2, pp. 123-130, 2005.
[20] S.P. Levine, J.E. Huggins, S.L. BeMent, R.K. Kushwaha, L.A. Schuh, E.A. Passaro, M.M. Rohde, and D.A. Ross, "Identification of electrocorticogram patterns as the basis for a direct brain interface," Clin. Neurophysiol., vol. 16, pp. 439-447, 1999.
指導教授 李柏磊(Po-lei Lee) 審核日期 2007-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明