博碩士論文 955201096 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:18.227.134.133
姓名 詹清硯(Chin-Yan Chan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波及毫米波行進波切換器之研製
(Design of Microwave and Millimeter-Wave Traveling Wave Switch)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器★ 微波與毫米波相位陣列收發積體電路之研製
★ 24 GHz汽車防撞雷達收發積體電路之研製★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究
★ 高功率高效率放大器與振盪器研製★ 微波與毫米波寬頻主動式降頻器
★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用★ 寬頻主動式半循環器與平衡器研製
★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製★ 銻化物異質接面場效電晶體之研製及其微波切換器應用
★ 微波毫米波寬頻振盪器與鎖相迴路之研製★ 使用達靈頓對之單晶微波及毫米波寬頻電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在無線通訊系統中,高性能切換器為射頻前端的一個重要區塊。為了可以設計出一個可以涵蓋多個頻段的切換器,本論文採用具寬頻特性的行進波架構來設計切換器,並針對行進波切換器作改良及應用。
第一章為論文的緒論。第二章介紹本論文設計切換器所採用的主要架構—行進波切換器,並利用兩種製程分別設計兩類行進波收發切換器。第一個電路使用互補式金氧半導體(CMOS)製程設計使用50歐姆四分之ㄧ波長阻抗轉換器的行進波收發切換器,其操作頻率為30到70 GHz。第二個電路使用高速電子移動率電晶體(HEMT)製程設計使用串聯電晶體的行進波收發切換器,操作頻率從直流到44 GHz。第三章利用基底給予負偏壓的技術來改良行進波收發切換器的特性,藉由理論的討論及電路的實測驗證了其確實可改善電路的插入損耗與功率處理能力特性。第四章將行進波切換器應用在雙刀雙擲切換器的設計上,並以環形架構實現,電路的操作頻段可從直流延伸至20 GHz。第五章則為論文的結論。
摘要(英) In a wireless communication system, a high performance switch is an important building block of RF front-end system. In order to achieve a broadband switch, a traveling-wave topology is applied to the circuit design. Also, the improvement and applications of the traveling-wave switch are included in the thesis.
Introduction is given in chapter 1.The switch involved in the thesis are mainly based on the traveling-wave topology. The topology is described by two circuit designs with different processes and specifications in chapter 2: one traveling-wave T/R switch with a 50-Ω, λ/4 impedance transformer is designed using CMOS process, and the operating frequency is from 30 to 70 GHz. The other switch with a series transistor is designed using PHEMT process, and the operating frequency is from DC to 44 GHz. Furthermore, a technique of negative body bias is proposed to improve ciucuit performance in chapter 3. Based on the theory calculation and the experimental results, the insertion loss and power handling capability of the swiches are improved. In addition, a double-pole double-throw (DPDT) traveling-wave switch using a ring structurce is presented in chapter 4, and the operating frequency is from DC to 20 GHz. Finally, the conclusion is given in chapter 5.
關鍵字(中) ★ 微波
★ 毫米波
★ 行進波
★ 切換器
關鍵字(英) ★ switch
★ Millimeter-Wave
★ Microwave
★ Traveling Wave
論文目次 摘要 I
Abstract II
圖目錄 V
表目錄 X
第一章 緒論 1
1.1 研究動機 1
1.2 相關研究發展 2
1.3 論文貢獻 3
1.4 章節簡述 3
第二章 行進波切換器設計 5
2.1 簡介 5
2.2 常見的切換器架構 8
2.3 行進波切換器 11
2.4 行進波收發切換器 13
2.4.1 使用50歐姆四分之一波長阻抗轉換器的行進波收發切換器 14
2.4.1.1 觀念介紹 14
2.4.1.2 使用製程簡介 15
2.4.1.3 電路設計 16
2.4.1.4 量測考量 20
2.4.1.5 量測結果與討論 23
2.4.2 使用串聯電晶體的行進波收發切換器 29
2.4.2.1 觀念介紹 29
2.4.2.2 使用製程簡介 30
2.4.2.3 電路設計 30
2.4.2.4 量測考量 34
2.4.2.5 量測結果與討論 37
第三章 應用基底給予負偏壓技術改善電路特性 45
3.1 簡介 45
3.2 基底給予負偏壓技術相關概念介紹 45
3.3 應用基底給予負偏壓技術之測試電路 53
3.3.1 電路設計 53
3.3.2 量測考量 56
3.3.3 量測結果與討論 57
3.4 閘極浮接電晶體小訊號模型的建立 63
3.4.1 小訊號模型 63
3.4.2 外部參數萃取 65
3.4.3 內部參數萃取 71
3.4.4 小訊號模型建立結果 73
3.4.5 模型帶入電路的結果 76
3.5 使用90 nm製程之收發切換器 80
3.5.1 製程介紹 80
3.5.2 30-93 GHz行進波收發切換器 81
3.5.2.1 電路設計 81
3.5.2.2 量測考量 83
3.5.2.3 量測結果與討論 85
3.5.3 DC-60 GHz行進波收發切換器 93
3.5.3.1 電路設計 93
3.5.3.2 量測考量 95
3.5.3.3 量測結果與討論 97
第四章 雙刀雙擲行進波切換器 105
4.1 簡介 105
4.2 應用行進波概念設計之雙刀雙擲切換器 107
4.2.1 電路設計 107
4.2.2 量測考量 114
4.2.3 量測結果與討論 118
4.3 E-mode電晶體小訊號模型建立 128
4.3.1 元件參數萃取流程介紹 128
4.3.2 外部參數萃取 129
4.3.2.1 VDS=0 V,VGS>Vthrethold 129
4.3.2.2 VDS=0 V,VGS<Vpinch off 135
4.3.3 內部參數萃取 137
4.3.4 模型建立結果 140
4.3.5 尺寸法則(Scaling Rule) 140
4.4 增強式雙刀雙擲行進波切換器電路設計 144
第五章 結論 147
參考文獻 150
參考文獻 [1] L. Verweyen, A. Tessmann, Y. Campos-Roca, M. Hassler, A. Bessemoulin, H. Tischer, W.Liebl, T. Grave and V. Gungerich, “LMDS Up- and Down-Converter MMIC,” 2000 IEEE International Microwave Symposium Digest, vol. 3, pp. 1658-1688, June 2000.
[2] G. Torregrosa-Penalva, A. Asensio-Lopez, F. J. Ortega-Gonzalez and J. Lluch-Ladron-de-Guevara, “Low Cost Ka Band Transmitter Modules for LMDS Equipment Mass Production,” 2001 IEEE International Microwave Symposium Digest, vol. 2, pp. 953-956, May 2001.
[3] K. Ohata, T. Inoue, M. Funabashi, A. Inoue, Y. Takimoto, T. Kuwabara, S. Shinozaki, K. Maruhashi, K. Hosaya and H. Nagai, “Sixty-GHz-band Ultra-Miniature Monolithic T/ R Modules for Multimedia Wireless Communication Systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 12, pp. 2354-2360, Dec. 1996.
[4] T. Ninomiya, T. Saito, Y. Ohashi and H. Yatsuka, “60-GHz Transceiver for High-Speed Wireless LAN System,” 1996 IEEE International Microwave Symposium Digest, vol. 2, pp. 1171-1164, May 1996.
[5] J. Mondal, K. Wong, D. Richardson, K. Vu, K. Peterson, G. Dietz, R. Haubenstricker, N. Calanca, L. Gluck and S. Moghe, “77 GHz MMIC T/R Module for Diplex Radar Application in Collision Avoidance Radar (CAR),” 1998 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 181-184, Nov. 1998.
[6] L. Raffaelli, E. Stewart, R. Quimby, J. Borelli, A. Geissberger and D. Palmieri, “A Low Cost 77 GHz Monolithic Transmitter for Automotive Collision Avoidance System,” 1993 IEEE Microwave & Millimeter-wave Monolithic Circuits Symposium Digest, pp. 63-66, June 1993.
[7] M. Tutt, D. Pavlidis, G. I. Ng, M. Weiss and J. L. Cazauxt, “Monolithic Integrated Circuit Applications of InGaAs/InAlAs HEMTs,” 1988 Gallium Arsenide Integrated Circuits (GaAs IC) Symposium, pp. 293-296, Nov. 1988.
[8] Raymond S. Pengelly, “Early GaAs FET monolithic microwave integrated circuit developments for radar applications at Plessey, UK,” 2008 International Microwave Symposium Digest, pp. 827-830, June 2008.
[9] T. H. Oxley, K. J. Ming, G. H. Swallow, B. J. Climer and M. J. Sisson, “Hybrid Microwave Integrated Circuits For Millimeter Wavelengths,” 1972 International Microwave Symposium Digest, pp. 224-226, May 1972.
[10] G. L. Lan, D. L. Dunn, J. C. Chen, C. K. Pao and D. C. Wang, “A High Performance V-Band Monolithic FET Transmit-Receive Switch,” 1998 IEEE Microwave and Millimeter-wave Monolithic Circuits Symposium Digest, pp. 99-101, June 1998.
[11] H. Takasu, F. Sasaki, H. Kawasaki, H. Tokuda and S. Kamihashi, “W-Band SPST Transistor Switches,” IEEE Microwave and Guided Wave Letters, vol. 6, pp. 315-316, Sep. 1996.
[12] M. Madihian, L. Desclos, K. Maruhashi, K. Onda and M. Kuzuhara, “A Sub-Nanosecond Resonant-Type Monolithic T/R Switch for Millimeter-Wave Systems Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 7, pp. 1016-1019, July 1998.
[13] M. J. Schindler and A. Morris, “DC-40 GHz and 20-40 GHz MMIC SPDT Switches,” IEEE Transactions on Microwave Theory and Techniques, vol. 35, no. 12, pp. 1486-1493, Dec. 1987.
[14] K.-Y. Lin, W.-H. Tu, P.-Y. Chen, H.-Y. Chang, H. Wang and R.-B. Wu, “Millimeter-wave MMIC Passive HEMT Switches Using Traveling-Wave Concept,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1798-1808, Aug. 2004.
[15] Z.-M. Tsai, M.-C. Yeh, H.-Y. Chang, M.-F. Lei, K.-Y. Lin, C.-S. Lin and H. Wang, “FET-integrated CPW and the Application in Filter Synthesis Design Method on Traveling-Wave Switch Above 100 GHz,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 5, pp. 2090-2097, May 2006.
[16] H. Mizutani, M. Funabashi, M. Kuzuhara and Y. Takayama “Compact DC–60-GHz HJFET MMIC Switches Using Ohmic Electrode-Sharing Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 11, pp. 1597-1603, May 1998.
[17] S.-F. Chang, W.-L. Chen, J.-L. Chen, H.-W. Kuo and H.-Z. Hsu, “New Millimeter-Wave MMIC Switch Design Using the Image-Filter Synthesis Method,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 3, pp. 103-105, Mar. 2004.
[18] K.-Y. Lin, Y.-J. Wang, D.-C. Niu and H. Wang, “Millimeter-Wave MMIC Single-Pole-Double-Throw Passive HEMT Switches Using Impedance Transformation Networks,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1076-1085, Apr. 2003.
[19] P. Bemkopf, M. Schindler and A. Bertrand, “A High Power K/Ka-Band Monolithic T/R Switch,” 1991 IEEE Microwave & Millimeter-wave Monolithic Circuits Symposium Digest, pp. 15-18, 1991.
[20] D. L. Ingram, K. Cha, K. Hubbard and R. Lai, “Q-Band High Isolation GaAs HEMT Switches,” 1996 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 289-292, Nov. 1996.
[21] M. Hieda, K. Nakahara, K. Miyaguchi, H. Kurusu, Y. Iyama, T. Takagi and S. Urasaki, “High-Isolation Series-Shunt FET SPDT Switch With a Capacitor Canceling FET Parasitic Inductance,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2453-2458, Dec. 2001.
[22] M.-C. Yeh, Z.-M. Tsai, R.-C. Liu, K.-Y. Lin, Y.-T. Chang and H. Wang, “Design and Analysis for a Miniature CMOS SPDT Switch Using Body-Floating Technique to Improve Power Performance,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 31-39, Jan. 2006.
[23] F.-J. Jung and Kenneth O, “A 0.5-μm CMOS T/R Switch for 900-MHz Wireless Application,” IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 486-492, Mar. 2006.
[24] Y. Jin and C. Nguyen, “Ultra-Compact High-Linearity High-Power Fully Integrated DC-20-GHz 0.18-μm CMOS T/R Switch,” IEEE Transaction on Microwave Theory and Techniques, vol. 55, no. 1, pp. 30-36, Jan. 2007.
[25] G. Dambrine, A. Cappy, F. Heliodore and E. Playez, “A New Method for Determining the FET Small-Signal Equivalent Circuit,” IEEE Transaction on Microwave Theory and Techniques, vol. 36, no. 7, pp. 1151-1159, Jan. 1988.
[26] A. Bracale, D. Pasquet, J. L. Gautier, V. Ferlet, N. Fel and J. L. Pelloie, “Small Signal Parameters Extraction for Silicon MOS Transistors,” European Microwave Conference, pp. 1-4, Oct. 2000.
[27] L. Yang and S. I. Long, “New Method to Measure the Source and Drain Resistance of the GaAs MESFET,” IEEE Electron Device Letters, vol. 7, pp. 75-77, Feb. 1986.
[28] M.-C. Yeh, Z.-M. Tsai and H. Wang, “A Miniature DC-to-50 GHz CMOS SPDT Distributed Switch,” European Microwave Conference, vol. 3, Oct. 2005.
[29] K.-H. Pao, C.-Y. Hsu, H.-R. Chuang, C.-L. Lu and C.-Y. Chen “A 3-10GHz Broadband CMOS T/R Switch for UWB Applications,” European Microwave Integrated Circuits Conference, pp. 452-455, Sept. 2006.
[30] Y. Jin and C. Nguyen, “A 0.25-mm CMOS T/R Switch for UWB Wireless Communications,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 8, pp. 502-504, Aug. 2005.
[31] Q. Li and Y.-P. Zhang, “CMOS T/R Switch Design: Towards Ultra-Wideband and Higher Frequency,” IEEE Journal of Solid-State Circuits, vol. 42, no. 3, pp. 563-570, Mar. 2007.
[32] Q. Li, Y.-P. Zhang, K.-S. Yeo and W.-M. Lim, “16.6- and 28-GHz Fully Integrated CMOS RF Switches with Improved Body Floating,” IEEE Transaction on Microwave Theory and Techniques, vol. 56, no. 2, pp. 339-345, Feb. 2008.
[33] Z. Li and Kenneth K. O, “A 15-GHz Integrated CMOS Switch with 21.5-dBm IP1dB and 1.8-dB Insertion Loss,” 2004 Symposium on VLSl Circuits Digest of Technical Papers, pp. 366-367, June 2004.
[34] C. M. Ta, E. Skafidas and R. J. Evans, “A 60-GHz CMOS Transmit/Receive Switch,” IEEE Radio Frequency Integrated Circuits, pp. 725-728, June 2007.
[35] B. Wicks, C. M. Ta, E. Skafidas, R. J. Evans and I. Mareels, “A 60-GHz Power Amplifier and Transmit/Receive Switch for Integrated CMOS Wireless Transceivers,” International Conference on Microwave and Millimeter Wave Technology, pp. 155-158, Apr. 2008.
[36] M.-C. Yeh, Z.-M. Tsai, K.-Y. Lin, H. Wang, C.-Y. Su and C.-P. Chao, “A Millimeter-Wave Wideband SPDT Switch with Traveling-Wave Concept using 0.13-μm CMOS Process,” International Microwave Symposium Digest, pp. 53-56, June 2005.
[37] B.-W. Min and G.-M. Rebeiz, “Ka-Band Low-Loss and High-Isolation 0.13 μm CMOS SPST/SPDT Switches Using High Substrate Resistance,” IEEE Radio Frequency Integrated Circuits, pp. 569-572, June 2007.
[38] S.-F. Chao, H. Wang, C.-Y. Su and J. G. J. Chern, “A 50 to 94-GHz CMOS SPDT Switch Using Traveling-Wave Concept,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 2, pp. 130-32, Feb. 2007.
[39] Y.-J. Wang, K.-Y. Lin, D.-C. Niu and H. Wang, “A V-Band MMIC SPDT Passive HEMT Switch Using Impedance Transformation Networks,” IEEE International Microwave Symposium Digest, vol. 1, pp. 253-256, May 2001.
[40] K. Kohama, T. Ohgihara and Y. Murakami, “High power DPDT antenna switch MMIC for digital cellular systems,” IEEE Journal of Solid-State Circuits, vol. 31, no. 10, pp. 1406-1411, Oct. 1996.
[41] Z. Yang, T. Yang, Y. You and R. Xu, “A 2 GHz High Isolation DPDT Switch MMIC,” Asia Pacific Microwave Conference, vol. 2, Dec. 2005.
[42] C.-H. Lee, B. Banerjee and J. Laskar, “Novel T/R Switch Architectures for MIMO Applications,” IEEE International Microwave Symposium Digest, vol. 2, pp. 1137-1140, June 2004.
[43] Z. Gu, D. Johnson, S. Belletete and D. Frjklund, “A High Power DPDT MMIC Switch for Broadband Wireless Applications,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 687-690, June 2003.
[44] A. Barov and M. Ignatjev, “MMIC GaAs MESFET switch,” International Crimean Conference on Microwave and Telecommunication Technology, pp. 137-138, Sept. 2004.
[45] John S. McKillop, “RF MEMS Switch ASICS,” Asia Pacific Microwave Conference, Dec. 2007.
[46] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000, Chapter 2.
[47] S.-W. Chen, O. Aina, W. Li, L. Phelpa and T. Lee, “An accurately scaled small-signal model for interdigitated power P-HEMT up to 50 GHz,” IEEE Transaction on Microwave Theory and Techniques, vol. 45, no. 5, pp. 700-703, May 1997.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2009-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明