參考文獻 |
[1] 陳啟東, “單電子電晶體簡介,” 物理雙月刊, 第二十六卷, 第三期, 483頁, 2004年.
[2] T. Hiramoto et al., “Room-temperature demonstration of low-voltage and tunable static memory based on negative differential conductance in silicon single-electron transistors,” Appl. Phys. Lett., vol. 85, p. 6233, 2004.
[3] S. Lee et al., “Extremely high flexibilities of Coulomb blockade and negative differential conductance oscillations in room-temperature-operating silicon single hole transistor,” Appl. Phys. Lett., vol. 92, p. 073502, 1998.
[4] T. Hiramoto et al., “Observation of current staircase due to large quantum level spacing in a silicon single-electron transistor with low parasitic series resistance,” J. Appl. Phys., vol. 91, p. 6725, 2002.
[5] T. Hiramoto et al., “Experimental study on quantum confinement effects in silicon nanowire metal-oxide-semiconductor field-effect transistors and single-electron transistors,” J. Appl. Phys., vol. 103, p. 053709, 2008.
[6] S. Y. Chou et al., “Single hole quantum dot transistors in silicon,” Appl. Phys. Lett., vol. 67, p. 2338, 1995.
[7] S. Y. Chou et al., “Observation of quantum effects and Coulomb blockade in silicon quantum-dot transistors at temperatures over 100 K,” Appl. Phys. Lett., vol. 67, p. 938, 1995.
[8] L. Zhuang et al., “Silicon single-electron quantum-dot transistor switch operating at room temperature,” Appl. Phys. Lett., vol. 72, p. 1025, 1998.
[9] L. C. Ma et al., “Electrostatic funneling for precise nanoparticle placement: a route to wafer-scale integration,” Nano Letters, vol. 7, p. 439, 2007.
[10] S. Onclin et al., “Engineering the silicon oxide surface using self-assembled monolayers,” Angew. Chem. Int. Ed., vol. 44, p. 6282, 2005.
[11] R. K. Smith et al., “Patterning self-assembled monolayers,” Prog. Surf. Sci., vol. 75, p. 1, 2004.
[12] Y. Nakamura et al., “Al/Al2O3/Al single electron transistorsoperable up to 30 K utilizing anodization controlled miniaturization enhancement,” Appl. Phys. Lett., vol. 68, p. 275, 1996.
[13] W. Chen et al., “Coulomb blockade at 77 K in nanoscale metallic islands in a lateral nanostructure,” Appl. Phys. Lett., vol. 66, p. 3383, 1995.
[14] D. L. Klein et al., “Anapproach to electrical studies of single nanocrystals,” Appl. Phys. Lett., vol. 68, p. 2574, 1996.
[15] K. Matsumoto, “STM/AFM nano-oxidation process to room-temperature-operated single-electron transistor and other devices,” Proceedings of the IEEE, vol. 14, p. 612, 1997.
[16] M. E. Rubin et al., “Imaging and spectroscopy of single InAs self-assembled quantum dots using ballistic electron emission microscopy,” Phys. Rev. Lett., vol. 77, p. 5268, 1996.
[17] Y. Takahashi et al., “Size dependence of the characteristics of Si single electron transistors on SIMOX substrates,” Electron Devices IEEE Trans., vol. 43, p. 1213, 1996.
[18] M. Saitoh et al., “Room-temperature demonstration of integrated silicon single-electron transistor circuit for current switching and analog pattern matching,” IEDM Tech. Dig., p. 187, 2004.
[19] T. Hiramoto et al., “Experimental study on quantum confinement effects in silicon nanowire metal-oxide-semiconductor field-effect transistors and single-electron transistors,” J. Appl. Phys., vol. 103, p. 053709, 2008.
[20] P. W. Li et al., “Growth kinetics and related physical/electrical propertiesof Ge quantum dot formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnol., vol. 18, p. 145402, 2007.
[21] 陳冠宏, “應用於高效率單電子元件鍺量子點之研製:鍺量子點定位與定量之探討,” 國立中央大學, 碩士論文, 2009年.
[22] 黃郁婷, “垂直式單電子/電洞電晶體之研製,” 國立中央大學, 碩士論文, 2009年.
|