博碩士論文 965201068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.191.66.102
姓名 張兆輝(Chao-Hui Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用多邊形結構控制鍺量子點之位置與數量以及相關共振二極體之研究
(Positioning and numbering Ge quantum dots for effective quantum electrodynamic device)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性★ 自對準矽奈米線金氧半場效電晶體之研製
★ 鍺浮點記憶體之研製★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析
★ 具有自我對準電極鍺量子點單電洞電晶體之製作與物理特性研究★ 具有自我對準下閘電極鍺量子點單電洞電晶體之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 單電子電晶體發展至今,各個研究團隊利用半導體材料製作量子點,雖然目前已經有許多製作量子點的技術陸續被研發出來,但大多都面臨了再現性低與量子點大小位置無法掌控的問題。本論文研究討論利用選擇性氧化複晶矽鍺以形成鍺量子點的技術,除了可利用鍺材料的電子費米波長較矽材料的費米波長大,來克服矽量子點微縮的問題;也可利用矽鍺合金的選擇性氧化克服了量子點需要精準的微影蝕刻技術,且也不需要在高成本的絕緣層上覆矽基板製作等的問題。而本論文實驗調變各種多邊形圖案之孔洞大小,精確地控制鍺量子點之數量與位置。利用多邊形側壁為二氧化矽的條件,且各圖案的內心圓半徑等於或小於15 nm時,可觀察到單一顆的鍺量子點分佈在多邊形圖案中間。而多邊形側壁為氮化矽的條件時,當各圖案的內心圓半徑等於或小於15 nm,也會觀察到單一顆的鍺量子點分佈在多邊形圖案的中間;但當內心圓半徑介於30 nm與70 nm之範圍內,鍺量子點會分佈在多邊形圖案的邊緣甚至是角落。於是我們可利用此方法,對鍺量子點定位與定量。單一顆鍺量子點可供單電子電晶體應用;而兩顆、三顆等等的量子點做為偶合量子點之用。
摘要(英) Recently semiconductor quantum dots have been extensively researched, but the most of the forming quantum dots techniques face the problems of low reproducibility and poor controllability on the position and the number of quantum dots.
 This thesis demonstrates the feasibility of positioning and numbering Ge quantum dots by means of oxidizing SiGe polygonal cavities with SiO2 and Si3N4 spacers. For polygons with SiO2 spacers have an inner circle radius less than 15 nm, one Ge quantum dot is formed in the center of cavity with a dot size of 10.4 nm. In contrast, polygons with Si3N4 spacers have the same inner circle radius, one Ge quantum dot formed in the center of triangle, square, and pentagonal cavities, with a dot size of 10.4 nm, 12.6 nm, and 10.9 nm. For a triangle with Si3N4 spacers have the inner circle radius between 35 and 40 nm, Ge quantum dots exist only at the corners of triangle, with an average dot size between 9.8 ± 0.7 nm and 10.2 ± 0.6 nm.
 Using this method, it is reasonable to expect that effective single-electron transistors and coupled quantum dots devices could be realized.
關鍵字(中) ★ 多邊形圖案
★ 鍺量子點定位與定量
關鍵字(英) ★ oxidizing SiGe polygonal cavities with SiO2 and
★ positioning and numbering Ge quantum dots
論文目次 中文摘要…………………………………………………………… i
英文摘要…………………………………………………………… ii
致謝………………………………………………………………… iii
目錄………………………………………………………………… iv
圖目錄……………………………………………………………… vi
第一章 簡介與研究動機………………………………………… 1
 1-1 前言………………………………………………………… 1
 1-2 半導體的發展史…………………………………………… 1
 1-3 單電子電晶體的發展……………………………………… 2
 1-4 製作量子點的材料與技術………………………………… 6
 1-5 研究動機…………………………………………………… 8
第二章 實驗的關鍵製程與製作流程…………………………… 19
 2-1 實驗結構的設計與製備…………………………………… 19
  2-1-1 奈米孔洞的蝕刻……………………………………… 20
  2-1-2 多邊形側壁沉積……………………………………… 25
 2-2 最佳化的製作流程………………………………………… 26
第三章 鍺量子點分佈的情形與FFT之分析…………………… 40
 3-1 前言與利用TEM觀察到的實驗結果……………………… 40
 3-2 實驗結果之分析與討論…………………………………… 41
 3-3 快速傅立葉轉換(FFT)之分析…………………………… 45
第四章 共振穿隧二極體之製作與電性量測…………………… 53
 4-1 前言………………………………………………………… 53
 4-2 製作流程…………………………………………………… 53
 4-3 電性量測…………………………………………………… 55
 4-4 製程討論…………………………………………………… 56
第五章 總結與未來展望………………………………………… 62
參考文獻…………………………………………………………… 64
參考文獻 [1] 陳啟東, “單電子電晶體簡介,” 物理雙月刊, 第二十六卷, 第三期, 483頁, 2004年.
[2] T. Hiramoto et al., “Room-temperature demonstration of low-voltage and tunable static memory based on negative differential conductance in silicon single-electron transistors,” Appl. Phys. Lett., vol. 85, p. 6233, 2004.
[3] S. Lee et al., “Extremely high flexibilities of Coulomb blockade and negative differential conductance oscillations in room-temperature-operating silicon single hole transistor,” Appl. Phys. Lett., vol. 92, p. 073502, 1998.
[4] T. Hiramoto et al., “Observation of current staircase due to large quantum level spacing in a silicon single-electron transistor with low parasitic series resistance,” J. Appl. Phys., vol. 91, p. 6725, 2002.
[5] T. Hiramoto et al., “Experimental study on quantum confinement effects in silicon nanowire metal-oxide-semiconductor field-effect transistors and single-electron transistors,” J. Appl. Phys., vol. 103, p. 053709, 2008.
[6] S. Y. Chou et al., “Single hole quantum dot transistors in silicon,” Appl. Phys. Lett., vol. 67, p. 2338, 1995.
[7] S. Y. Chou et al., “Observation of quantum effects and Coulomb blockade in silicon quantum-dot transistors at temperatures over 100 K,” Appl. Phys. Lett., vol. 67, p. 938, 1995.
[8] L. Zhuang et al., “Silicon single-electron quantum-dot transistor switch operating at room temperature,” Appl. Phys. Lett., vol. 72, p. 1025, 1998.
[9] L. C. Ma et al., “Electrostatic funneling for precise nanoparticle placement: a route to wafer-scale integration,” Nano Letters, vol. 7, p. 439, 2007.
[10] S. Onclin et al., “Engineering the silicon oxide surface using self-assembled monolayers,” Angew. Chem. Int. Ed., vol. 44, p. 6282, 2005.
[11] R. K. Smith et al., “Patterning self-assembled monolayers,” Prog. Surf. Sci., vol. 75, p. 1, 2004.
[12] Y. Nakamura et al., “Al/Al2O3/Al single electron transistorsoperable up to 30 K utilizing anodization controlled miniaturization enhancement,” Appl. Phys. Lett., vol. 68, p. 275, 1996.
[13] W. Chen et al., “Coulomb blockade at 77 K in nanoscale metallic islands in a lateral nanostructure,” Appl. Phys. Lett., vol. 66, p. 3383, 1995.
[14] D. L. Klein et al., “Anapproach to electrical studies of single nanocrystals,” Appl. Phys. Lett., vol. 68, p. 2574, 1996.
[15] K. Matsumoto, “STM/AFM nano-oxidation process to room-temperature-operated single-electron transistor and other devices,” Proceedings of the IEEE, vol. 14, p. 612, 1997.
[16] M. E. Rubin et al., “Imaging and spectroscopy of single InAs self-assembled quantum dots using ballistic electron emission microscopy,” Phys. Rev. Lett., vol. 77, p. 5268, 1996.
[17] Y. Takahashi et al., “Size dependence of the characteristics of Si single electron transistors on SIMOX substrates,” Electron Devices IEEE Trans., vol. 43, p. 1213, 1996.
[18] M. Saitoh et al., “Room-temperature demonstration of integrated silicon single-electron transistor circuit for current switching and analog pattern matching,” IEDM Tech. Dig., p. 187, 2004.
[19] T. Hiramoto et al., “Experimental study on quantum confinement effects in silicon nanowire metal-oxide-semiconductor field-effect transistors and single-electron transistors,” J. Appl. Phys., vol. 103, p. 053709, 2008.
[20] P. W. Li et al., “Growth kinetics and related physical/electrical propertiesof Ge quantum dot formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnol., vol. 18, p. 145402, 2007.
[21] 陳冠宏, “應用於高效率單電子元件鍺量子點之研製:鍺量子點定位與定量之探討,” 國立中央大學, 碩士論文, 2009年.
[22] 黃郁婷, “垂直式單電子/電洞電晶體之研製,” 國立中央大學, 碩士論文, 2009年.
指導教授 李佩雯(Pei-wen Li) 審核日期 2009-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明