博碩士論文 965201101 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.133.108.48
姓名 黃立維(Li-Wei Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 明暗閃爍視覺誘發電位於遙控器之應用
(Implementation of a brain-wave actuated remote controller using onset-offset steady-state visual evoked potentials)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷
★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除★ 智慧型心電圖遠端監控系統
★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測
★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割★ 應用小波編碼於多通道生理訊號傳輸
★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測★ 利用經驗模態分解法於耳鳴病患之腦磁波穩態聽覺誘發磁場萃取
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 根據視覺誘發電位(Steady-State Visual Evoked Potentials, SSVEP)設計的大腦人機介面(Brain-Computer Interface, BCI)並執行特定動作已經是腦波在科學方面應用常見的例子,針對不同頻率所造成的反應,發現出兩個問題:若刺激為低頻,會有不舒適的現象,反之刺激若為高頻則誘發能量反應不明顯。從演算法或是硬體其實都沒有辦法改善這兩種狀況。
本論文提出改變刺激源呈現方式:調整刺激源Onset、和Offset的時間,藉以達成降低疲勞度的好處,不僅可以改變刺激源外觀,還可以保留大部分的誘發能量,達到既不耗損能量、又能夠提高舒適度的非對稱低頻閃爍刺激源。
在應用方面將非對稱刺激源利用相位編碼(Phase Coding)控制家電,其正確率平均可達到接近90%,簡單來說改變了刺激源的方式並不會造成推動BCI系統上面的影響,利用這樣的變化所帶來的好處,可以使受測者更舒適。
摘要(英) Due to high transfer rate (ITR), minimal training and noninvasiveness of the features in electroencephalography (EEG) system, steady-state visual evoked potentials (SSVEP) recorded from occipital scalp have been used as signal input for implementing brain computer interface (BCI) systems. These SSVEP-based BCIs require subjects to gaze at one or more flickering sources to evoke SSVEPs for system control. Nevertheless, due to the frequency preference of SSVEPs in human, the flickering frequency used for SSVEP stimulation is usually controlled lower than 27 Hz. The use of stimulation frequency equaled or lower to medium stimulation range (? 27 Hz) inevitably causes subjects’ uncomfortableness. Accordingly, this thesis aims to present a brain-computer interface (BCI) with adjustable on-off duration in order to suppress users’ uncomfortableness. The proposed system has been used to control six functions of a remote controller with acceptable accuracy (~90%) and high information transfer rate (ITR).
關鍵字(中) ★ Onset/Offset
★ 大腦人機介面
★ 相位編碼
★ 視覺誘發電位
關鍵字(英) ★ BCI
★ SSVEP
★ Onset/Offset
★ Phase coding
論文目次 中文摘要 I
Abstract II
致謝 III
圖目錄 VI
表目錄 X
第一章 緒論 1
第二章 視覺誘發腦波與大腦人機介面系統介紹 2
2.1 腦波 2
2.2 視覺誘發電位 6
2.3 基於視覺誘發電位的大腦人機介面 14
第三章 非對稱明暗閃爍視覺誘發電位研究 16
3.1 傳統閃爍刺激源介紹 16
3.2 非對稱明暗閃爍刺激源介紹、電路設計與相位分析 22
3.2.1 暗寬度調變 23
3.2.2 亮寬度調變 26
3.2.3 閃爍刺激源的電路設計 29
3.3 相位分析方法 34
3.5 腦波擷取 40
3.6 實驗設計和步驟 41
3.6.1 明暗閃爍刺激源性質研究 41
3.6.2 利用非對稱明暗閃爍刺激源搭配相位編碼控制遙控器 43
第四章 實驗結果 49
4.1 調整明暗閃爍產生之反應 49
4.2 相位編碼及時控制應用結果 60
第五章 結論與未來展望 63
Reference 64
參考文獻 [1] 陳煒燁, ”利用SVM分類演算法於EEG-P300的偵測與分析”, 逢甲大學, 2008
[2] J. Odom, M. Bach, C. Barber et al., “Visual evoked potentials standard (2004),” Documenta ophthalmologica, vol. 108, no. 2, pp. 115-123, 2004.
[3] E. Sutter, “The brain response interface: communication through visually-induced electrical brain responses,” Journal of Microcomputer Applications, vol. 15, no. 1, pp. 31-45, 1992.
[4] P. Kennedy, R. Bakay, M. Moore et al., “Direct control of a computer from the human central nervous system,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 198-202, 2000.
[5] S.P. Levine et al., "A direct brain interface based on event -related potentials," IEEE Trans. Rehab. Eng., vol. 8, pp. 180-185, 2000.
[6] P.J. Cilliers and A.J.W. Van Der Kouwe, "A VEP-based computer interface for C2-quadriplegics," IEEE Med. Biol. Eng., vol. 15, pp. 1263-1264, 1993.
[7] American Encephalographic Society. Guideline thirteen, " Guidelines for standard electrode position nomenclature," Clin. Neurophysiol., vol. 11, pp. 111-113, 1994.
[8] S.T. Morgan, J.C. Hansen, and S.A. Hillyard, "Selective attention to stimulus location modulates the steady-state visual evoked potential," Proc. Nat. Acad. Sci. USA, vol. 93, pp. 4770-4774, 1996.
[9] M. Cheng, X. Gao, S. Gao et al., “Design and implementation of a brain-computer interface with high transfer rates,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 10, pp. 1181-1186, 2002.
[10] P.L. Lee, J.C. Hsieh, C.S. Wu et al., “Brain computer interface using flash onset and offset visual evoked potentials,” Clinical Neurophysiology, 2007.
[11] F. Bandini, M. Pierantozzi, and I. Bodis-Wollner, “Parkinson's disease changes the balance of onset and offset visual responses: an evoked potential study,” Clinical Neurophysiology, vol. 112, no. 6, pp. 976-983, 2001.
[12] Y. Wang, X. Gao, B. Hong et al., “Brain-Computer Interfaces Based on Visual Evoked Potentials,” IEEE Engineering in Medicine and Biology Magazine, vol. 27, no. 5, pp. 64-71, 2008.
[13] Y. Wang, R. Wang, X. Gao et al., “A practical VEP-based brain-computer interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 234-240, 2006.
[14] F. Beverina, G. Palmas, S. Silvoni et al., “User adaptive BCIs: SSVEP and P300 based interfaces,” PsychNology Journal, vol. 1, no. 4, pp. 331-354, 2003.
[15] G. Muller-Putz, R. Scherer, C. Brauneis et al., “Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components,” Journal of neural engineering, vol. 2, no. 4, pp. 123-130, 2005.
[16] 陳佑嘉, ”多重生理參數量測式新型生物回饋系統”, 國立成功大學, 2002
[17] 謝竣傑, ”多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面”, 國立中央大學, 2007
[18] E. American, “Society: Guideline thirteen: Guidelines for standard electrode position nomenclature,” J Clin Neurophysiol, vol. 11, pp. 111-3, 1994.
[19] G. Garcia, “High frequency SSVEPs for BCI applications.”
[20] J. Duysens, S. Schaafsma, and G. Orban, “Cortical off response tuning for stimulus duration,” Vision Research, vol. 36, no. 20, pp. 3243-3251, 1996.
[21] C. Herrmann, “Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena,” Experimental Brain Research, vol. 137, no. 3, pp. 346-353, 2001.
[23] P.L. Lee, C.S. Wu, J.C. Hsieh et al., “Visual evoked potential actuated brain computer interface: a brain-actuated cursor system,” Electronics letters, vol. 41, no. 15, pp. 832-834, 2005.
[24] J. McClellan, R. Schafer, and M. Yoder, Signal processing first: Pearson/Prentice Hall Upper Saddle River, NJ, 2003.
[25] A. Oppenheim, and R. Schafer, Discrete-time signal processing: Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1989.
[26] 曾百由, dsPIC 數位訊號控制器原理與應用, 宏友出版社
[27] 劉育芳, “人腦-電腦介面系統臨床實驗流程之分析研究”, 國立台南大學, 2005
[28] 莊舜龍, “適應濾波器與事件相關電位於腦波前處理之應用”, 國立成功大學, 2003
[29] M. Pastor, J. Artieda, J. Arbizu et al., “Human cerebral activation during steady-state visual-evoked responses,” Journal of Neuroscience, vol. 23, no. 37, pp. 11621-11627, 2003.
[30] 蒙以正編著,「數位信號處裡應用MATLAB」, 旗標出版股份有限公司
[31] 張智星編著,「MATLAB程式設計與應用」, 清蔚科技出版
台北榮總整合性腦功能研究 http://ibru.vghtpe.gov.tw/chinese/eeg.htm
腦波介紹 http://memo.cgu.edu.tw/yun-ju/cguweb/SciLearn/Introduction/intro03Brain/brain05.htm
http://li.tmu.edu.tw/slide/Computer_Med/index.htm
指導教授 李柏磊(Po-Lei Lee) 審核日期 2009-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明