博碩士論文 953202029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.144.39.138
姓名 廖偉榕(Wei-Jung Liao)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 具AAR活性砂漿試體在不同單維電場強度作用下之離子傳輸行為研究
(Migration behavior of AAR reactive mortar effected by 1D electric field with different Indensity.)
相關論文
★ 水泥製程於資源再利用之研究★ 焚化底渣水洗前處理及應用之探討
★ 鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研究★ 水洗礦尾渣造粒後之粒料特性探討
★ 水洗礦尾渣取代水泥製品中細粒料之可行性研究★ 陶瓷業無機性污泥資源化用於人工細粒料及自充填混凝土之研究
★ 磚製品中摻配鈦砂之較佳配比研究★ 單維電化學傳輸陽離子技術抑制混凝土ASR之研究
★ 不同醇類製備聚丙烯酸酯應用於水泥基材的行為研究★ 人工粒料作為路基材料及CLSM對RC構件和金屬腐蝕之影響研究
★ 經高溫製程產生含矽再生粒料之鹼質活性研究★ 改質人工粒料的應用策略基礎研究
★ 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究★ 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究
★ 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討★ 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用快速鋰離子傳輸技術(ALMT),採用外加電場作用的方式,快速將鋰離子送入具AAR活性之砂漿試體,同時將試體內的鈉、鉀離子驅趕出試體,探討施加不同定電壓或定電流密度、改變試體養護條件及長徑比時,對於ALMT運用時離子傳輸行為及效能影響。研究結果顯示,於ALMT試驗中,無論施加定電壓或定電流密度,皆能達到抑制AAR的預期目標,但因通電系統阻抗會逐漸升高,故施加定電流密度較適合用於現場實務。在施加定電流密度的試驗中,鋰離子通過試體的時間會隨施加電流密度值的增加而減少;鈉、鉀離子初始移除流量與鋰離子在陰極槽的穩態流量值,均與施加電流密度有良好的線性正相關。38°C及23°C養護試體以施加定電流密度進行ALMT試驗,發現二者離子傳輸趨勢相似,而前者較後者的鋰離子通過試體的時間縮短,移除鈉、鉀離子初始流量及鋰離子在陰極槽的穩態流量值均增加。使用ALMT於現場實務時,電場間距的使用有其限制,若間距太大會造成離子傳輸效能不佳,且會造成鋰、鈉、鉀離子在試體內分佈不均勻的問題,仍有產生AAR危害的疑慮。
摘要(英) This research is apply electrical drive lithium ions into mortar specimens and remove sodium and potassium ions out the specimens. And evaluate the migration behaviors of Li+, Na+ and K+ ions in mortar specimens and treatment effects after applying constant voltage, constant current density, changing the cured conditions, and whe dimensions of the specimens.
Results showed that applied constant voltage and constant current density both could inhibit AAR problem. However, due to the increase of the system’s impedance during the electric treatment. Also, applied constant current density test, the time of Li+ ions pass the mortar specimens decreses with increasing current density. The initial flow of Na+ and K+ and the flow of Li+ in the catholyte all have good line correlation with increasing current density.
The specimens after 23℃ or 38℃ curried time both with similar migration behaviors during ALMT (Accelerated Lithium Migration Technique) test. The time of Li+ penetrating specimes for the 38℃ curried specimen is shorter than the 23℃ curried specimen’s. However, for the 38℃ curried specimen,the initial flow of Na+ and K+, and the steady-state flow of Li+ in catholyte is more than for the 23℃ curried specimen’s.
Results also show that increasing the length of specimen, the effectivity of the migration behavior of Li+, Na+ and K+ decreases. While the length of specimen longer than some limit the effectivity decreases sharply, and the distributions of Li+, Na+ and K+ in the mortar specimens after ALMT treatment become unevenness, may still occur local AAR problem.
關鍵字(中) ★ 電滲法
★ 鹼質與粒料反應
★ 鋰離子
關鍵字(英) ★ electrochemical technique
★ lithium
★ alkali-aggregate reaction
論文目次 第一章 緒論 1
1-1 研究源起與動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 鹼質與粒料反應種類及機理 3
2-1-1 鹼-氧化矽反應(ASR) 3
2-1-2 鹼-碳酸鹽反應 4
2-1-3 鹼-矽酸鹽反應 4
2-2 鹼質與粒料反應的條件 5
2-2-1 混凝土中含有反應的活性粒料 5
2-2-2 孔隙溶液中需含有足夠的氫氧化鹼濃度 5
2-2-3 足夠的濕度 6
2-3 鹼質與粒料反應試驗方法 7
2-4 鹼質與粒料反應預防及維修方法研究現況 8
2-4-1 新建工程之預防方法 8
2-4-2 硬固混凝土之維修方式 8
2-5 應用鋰化合物抑制鹼質與粒料反應 9
2-5-1 鋰化合物抑制AAR 機理 9
2-5-2 鋰化合物抑制鹼質與粒料反應之有效用量 10
2-6 電化學技術評估混凝土耐久性研究現況 11
2-6-1 其它電滲方法的發展 12
2-6-2 影響離子移動的因素 13
2-7 以電化學技術維修AAR 14
第三章 試驗流程 18
3-1 試驗材料 18
3-1-1 水泥 18
3-1-2 試驗用粒料 19
3-1-2-1 粒料活性檢驗 20
3-1-2-2 粒料級配 21
3-1-3 拌合水 21
3-1-4 調整含鹼當量藥劑 22
3-1-5 電解液 22
3-2 試驗符號說明 23
3-3 試驗規劃 25
3-4 試驗儀器介紹及操作程序摘述 28
3-4-1 粒料處理 28
3-4-2 試體拌製 30
3-4-3 試體養護 31
3-4-4 試體切割 31
3-4-5 試體前處理 33
3-4-6 ALMT通電模組 36
3-4-7 離子濃度監測 38
3-4-8 試體內離子分佈分析 41
3-4-9 圓柱試體抗壓試驗 44
第四章 結果與討論 45
4-1 施加定電壓對ALMT離子傳輸行為的影響 45
4-1-1施加不同電壓對ALMT試驗歷時之電流量影響 45
4-1-1-1 初始電壓與初始電流之關係 45
4-1-1-2 通電歷時的電流量變化 46
4-1-2 對鋰離子傳輸之影響 48
4-1-2-1 施加不同電壓對鋰離子通過試體時間之影響 48
4-1-2-2 施加不同電壓對陰極槽鋰離子流量之影響 50
4-1-3 對鈉、鉀離子傳輸之影響 52
4-1-3-1 施加不同電壓對鈉、鉀離子移出速率之影響 52
4-1-3-2 施加不同電壓對鈉、鉀離子移出量之影響 54
4-1-4 在施加定電壓的ALMT試驗中累積電量與離子傳輸之關係 55
4-1-5 施加不同電壓對試體內離子分佈與含量之影響 57
4-1-5-1對試體內鋰離子分佈與含量之影響 57
4-1-5-2對試體內鈉離子分佈與含量之影響 58
4-1-6 在施加定電壓的ALMT試驗中電流值與離子傳輸之關係 59
4-2 施加定電流密度對ALMT之離子傳輸影響 60
4-2-1 施加不同電流密度對ALMT試驗歷時之電壓值影響 61
4-2-1-1初始電流與初始電壓之關係 61
4-2-1-2通電歷時的電壓值變化 62
4-2-2 對鋰離子傳輸之影響 66
4-2-2-1 施加不同定電流密度對鋰離子通過試體時間之影響 66
4-2-2-2 施加不同定電流密度對陰極槽鋰離子流量之影響 68
4-2-4 對鈉、鉀離子傳輸之影響 69
4-2-4-1 施加不同電流密度對鈉、鉀離子移出速率之影響 69
4-2-4-2 施加不同定電流密度對鈉、鉀離子移出量之影響 70
4-2-5 施加不同電流密度的ALMT試驗中累積電量與離子傳輸之關係 71
4-2-6 施加不同電流密度對試體內離子分佈與含量之影響 72
4-2-6-1對試體內鋰離子分佈與含量之影響 72
4-2-6-2 對試體內鈉、鉀離子分佈與含量之影響 73
4-2-7 在施加定電流密度的ALMT試驗中電流值與離子傳輸之關係 76
4-3 提高試體養護溫度對ALMT試驗中離子傳輸行為之影響 78
4-3-1對鋰離子傳輸速率之影響 79
4-3-2 38°C養護對於鈉、鉀離子傳輸速率之影響 82
4-3-3 38°C養護對試體內離子含量與分佈之影響 84
4-3-3-1 試體內鋰離子含量與分佈之影響 84
4-3-3-2 對試體內鈉、鉀離子含量與分佈之影響 86
4-4 試體長徑比對ALMT試驗離子傳輸之影響 88
4-4-1對鋰離子傳輸速率之影響 88
4-4-2對於鈉、鉀離子傳輸速率之影響 90
4-4-3對試體內鋰、鈉、鉀離子含量與分佈之影響 91
4-4-3-1對試體內鋰離子含量與分佈之影響 91
4-4-3-2對試體內鈉、鉀離子含量與分佈之影響 92
4-5電場作用對砂漿試體抗壓強度之影響 94
4-5-1 改變試體長徑比對抗壓強度之影響 94
4-5-2 改變養護溫度對抗壓強度之影響 95
4-6 ALMT維修不同養護溫度砂漿試體之成效檢討 96
4-6-1 試體內鋰含量 97
4-6-2 鋰/鈉 莫耳比 101
4-6-3 鹼含量之移出 104
4-7 綜合討論 106
第五章 結論與建議 107
5-1 結論 107
5-2 建議 108
參考文獻 參考文獻
〔1〕 許書王,「台灣地區鹼質與粒料反應抑制策略之研究」,國立中央大學土木工程研究所,博士論文,中壢,1999年。
〔2〕 李釗、饒正、張道光、陳桂清,「花蓮港區混凝土構造物鹼質與粒料反應之調查研究」,台灣省交通處港灣技術研究所,1998年。
〔3〕 李釗、許書王,「高雄港區混凝土構造物鹼質與粒料反應調查與潛勢分析研究」,交通部運輸研究所港灣技術研究中心期末報告,2000年。
〔4〕 柯正龍,「台中、基隆及蘇澳港港區混凝土構造物鹼質與粒料反應調查研究」,國立中央大學土木工程研究所,碩士論文,中壢,1999年。
〔5〕 陳仁達,「花東地區鹼-粒料反應及防治方法」,國立中央大學土木工程研究所,碩士論文,中壢 ,1999年。
〔6〕 王淑慧,「台灣地區岩石之鹼-粒料反應潛能研究」,國立中央大學土木工程研究所,碩士論文,中壢 ,1999年。
〔7〕 劉志堅,「台灣地區粒料活性探討暨鹼質與粒料反應電化學維修策略研究」,國立中央大學土木工程研究所,博士論文,中壢,2003年。
〔8〕 陳登義,「以電化學技術抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工程研究所,碩士論文,中壢,1999年。
〔9〕 蘇銘鴻,「電滲法運用於抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工程研究所,碩士論文,中壢,2002年。
〔10〕 王韡蒨,「台灣地區活性粒料之檢測方法研究」,國立中央大學土木工程研究所,碩士論文,中壢,2003年。
〔11〕 Stanton, T.E., “Influence of Cement and Aggregate on Concrete Expansion,”Engineering News-Record, pp.59-61, 124 Feb., 1940.
〔12〕 Gillott, J.E.,“Alkali-aggregate reaction in concrete,” Engineering Geology, Vol.9, pp.303-326, 1975.
〔13〕 Fournier, B., and Bérubé, M.A., “Alkali-Aggregate Reaction in Concrete: a Review of Basic Concepts and Engineering Implications,” Canadian Journal of Civil Engineering, Vol.27, Number 2, pp.167-191, April 2000.
〔14〕 Fournier, B., and Bérubé, M.A., “Alkali-Aggregate Reaction in Concrete: a Review of Basic Concepts and Engineering Implications,” Canadian Journal of Civil Engineering, Vol.27, Number 2, pp.167-191, April 2000.
〔15〕 Metha, P.K., “Concrete structure, properties, and materials,” pp.145-150,1986.
〔16〕 Diamond, S., “A review of the alkali-aggregate reaction and expansion mechanism, alkali in cement and in concrete pore solutions,”Cement and Concrete Research, Vol. 5, pp.329-346, 1975.
〔17〕 Hobbs, D.W.,“Expansion of concrete due to alkali-silica reaction, The Structural Engineer, Cement, Concrete, and Aggregate, England, 1984.
〔18〕 British Cement Association, “The diagnosis of alkali-silica reaction-report of a working party,”pp.36, 1992.
〔19〕 Lenzner, D., and Ludwig, V., “The alkali aggregate reaction with opaline sand stone from Schleswig-Holstein,” Proceedings of the 4th International Conference on Effects of Alkalis in cement and concrete, Purdue University,pp. 11-34, 1978.
〔20〕 Stark, D., and Depuy, G., “Alkali-silica reaction in five dams in southwestern United States,”In Proceedings of the Katharine and Bryant Mather International Conference on Concrete Durability, pp.1759-1786, April/May 1997.
〔21〕 Touma, W.E., Fowler, D.W., and Carrasquillo, R.L., “Alkali-silica reaction in portland cement concrete: testing methods and mitigation alternatives,” Research Report ICAR 301-1F, 2001.
〔22〕 Hichard, H., Stark, D, and Diamond, S., “Alkali-silica reactivity: an overview of research,”SHRP-C-343, Strategic Highway Research Program, National Research Council, Washington, D.C., 1993.
〔23〕 Sakaguchi, Y., Takakura, M., and Kitagawa, A., “The inhibiting effect of lithium compounds on alkali-silica reaction,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, pp. 229-234, 1989.
〔24〕 Thomas, M.D.A, Hooper, R., and Stokes, D, “Use of lithium-containing compounds to control expansion in concrete due to alkali-silica reaction,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp. 783-792, 2000.
〔25〕 Durand, B., “More results about the use of lithium salts and mineral admixtures to inhibit ASR in concrete,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp. 623-632, 2000.
〔26〕 Hichard, H., Stark, D, and Diamond, S., “Alkali-silica reactivity: an overview of research,” SHRP-C-343, Strategic Highway Research Program, National Research Council, Washington, D.C., 1993.
〔27〕 Page, C.L., and Yu, S.W., “Potential effects of electrochemical desalination of concrete on alkali-silica reaction,” Magazine of concrete research, Vol. 47, No, 170, pp. 23-31, 1995.
〔28〕 Stokes, D.B., “Use of lithium to combat alkali silica reactivity,” Proceeding of the 10th International Conference on Alkali-Aggregate Reaction, Melbourne, Australia, pp. 862-867, 1996.
〔29〕 McCoy, W.J., and Caldwell, A.G., “New approach to inhibiting
〔30〕 alkali-aggregate expansion,” Journal of the American Concrete Institute, Vol. 22, No. 9, pp. 693-706 (1951).
〔31〕 Diamond, S., “Unique response of LiNO3 as an alkali silica reaction-preventive admixture”, Cement and Concrete Research, Vol. 29, pp.1271-1275 (1999).
〔32〕 Lawrence, M., and Vivian, H.E., “The reactions of various alkalis with silica,” Australian Journal of applied science, Vol.12, pp.96-103 (1961).
〔33〕 Sakaguchi, Y., Takakura, M., and Kitagawa, A., “The inhibiting effect of lithium compounds on alkali-silica reaction,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, pp. 229-234 (1989).
〔34〕 Thomas, M.D.A, Hooper, R., and Stokes, D,“Use of lithium-containing compounds to control expansion in concrete due to alkali-silica reaction,”Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp. 783-792 (2000).
〔35〕 Diamond, S., “Unique response of LiNO3 as an alkali silica reaction-preventive admixture”, Cement and Concrete Research, Vol. 29, pp.1271-1275 (1999).
〔36〕 Blackwell, B.Q., Thomas, M.D.A., and Sutherland, A., “Use of lithium to control expansion due to alkali-silica reaction in concrete containing U.K. aggregates,” Durability of concrete proceedings Fourth CANMET/ACI International Conference, ACI SP 170-34, pp. 649-663, 1997.
〔37〕 Stark, D., and Depuy, G., “Alkali-silica reaction in five dams in southwestern United States,” In Proceedings of the Katharine and Bryant Mather International Conference on Concrete Durability, pp.1759-1786, April/May 1997.
〔38〕 ASTM C 1202-97, “Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration,” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
〔39〕 Dhir, R.K., ”Rapid Estimation of Chloride Diffusion Coefficient in Concrete,” Magazine of Concrete Research, Vol. 42, No. 152, pp. 177~185, 1990.
〔40〕 Halamickova, P., ”Water Permeability and Chloride Ion Diffusion in Portland Cement Mortars: Relationship to Sand Content and Critical Pore Diameter,” Cement and Concrete Research,” Vol. 25, No. 4, pp. 790~802, 1995.
〔41〕 McGrath, P.F., and Hooton, R.D., “Influence of Voltage on Chloride Diffusion Coefficients from Chloride Migration Tests,” Cement and concrete Research, Vol. 26, No. 8, pp.1239~1244, 1996.
〔42〕 Halamickova, P., ”Water Permeability and Chloride Ion Diffusion in Portland Cement Mortars: Relationship to Sand Content and Critical Pore Diameter,” Cement and Concrete Research,” Vol. 25, No. 4, pp. 790~802, 1995.
〔43〕 Luping, T., “Chloride Binding Capacity and Binding Isotherms of OPC Pastes and Mortars,” Cement and Concrete Research. Vol. 23, pp. 247~253, 1993.
〔44〕 Page, C.L., Short, N.R., and El Tarras, A., “Diffusion of Chloride Ions in Hardened Cement Paste,” Cement and Concrete Research, Vol. 11, No. 3, 395~406. 1981.
〔45〕 Whitmore, D., and Abbott, S., “Use of an applied electric field to drive lithium ions into alkali-silica reactive structures,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp.1089-1098, 2000.
〔46〕 Mindess. S., Young. J. F. and Darwin, D. Concrete. 2rd ed., Prentice-Hall, Inc., Upper Saddle River, New Jersey, pp. 372. 2002.
指導教授 李釗(Chau Lee) 審核日期 2008-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明