博碩士論文 953202040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.144.113.233
姓名 謝孟勳(Meng-Hsun Hsieh)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 不同醇類製成之丙烯酸酯對水泥基材的改質成效研究
(A study on preparation and results of the PAE modifying cementitious materials with different alcohol.)
相關論文
★ 水泥製程於資源再利用之研究★ 焚化底渣水洗前處理及應用之探討
★ 鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研究★ 水洗礦尾渣造粒後之粒料特性探討
★ 水洗礦尾渣取代水泥製品中細粒料之可行性研究★ 陶瓷業無機性污泥資源化用於人工細粒料及自充填混凝土之研究
★ 磚製品中摻配鈦砂之較佳配比研究★ 單維電化學傳輸陽離子技術抑制混凝土ASR之研究
★ 不同醇類製備聚丙烯酸酯應用於水泥基材的行為研究★ 人工粒料作為路基材料及CLSM對RC構件和金屬腐蝕之影響研究
★ 經高溫製程產生含矽再生粒料之鹼質活性研究★ 改質人工粒料的應用策略基礎研究
★ 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究★ 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究
★ 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討★ 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高分子聚合物近年來廣泛應用於水泥基材以改善其性能,然其成效上仍有工作性差、耐久性不佳及成本較高等缺點,使得聚合物發展受限。因此,如何研製新型聚合物以克服前述不利因素,將有助於擴大聚合物改質水泥基材之應用範圍。
本研究在考量成本及施工條件影響最小情況下,透過有利工作性之丙烯酸聚合物與乙醇、乙二醇、二乙二醇、月桂醇及硬脂醇等5種醇類進行酯化反應。在考量聚合物組成成分、劑量的添加及相容性情況下,製作丙烯酸酯聚合物(Polyacrylic ester , PAE),並針對丙烯酸酯組成成分及添加量對聚合物改質水泥基材的流動性、物理性質、力學性質、耐久性及孔隙結構等方面進行評估。綜合評估試驗結果,乙二醇反應生成之丙烯酸酯聚合物,其改質成效為5種醇類最佳,且乙二醇反應生成之丙烯酸酯聚合物又以酸、醇莫爾比為0.2時,成效最佳。新拌性質方面,隨聚合物添加量增加,水泥基材流動性亦隨之增加;硬固性質則以聚合物添加量0.1%為最佳,抗壓強度相較控制組可提升7~12%,吸水率、抗彎強度、黏結強度亦較控制組優良。此外,快速氯離子穿透試驗結果顯示丙烯酸酯聚合物的添加降低了水泥基材的氯離子穿透量; SEM觀測也顯示硬固後的聚合物改質水泥基材於孔隙結構形成薄膜,有助於提升混凝土之耐久性。但由於本研究在應用上,僅進行特定試驗及針對Ⅰ型波特蘭水泥進行改質,因此仍需更多資料,以評估其整體性質。
摘要(英) In recent years, polymer has been used for modifying cementitious materials widely in order to improve its performance. However, the polymer-modified cementitious materials still have many shortcomings, such as low workability, poor durability and high costs. In order to improve the above-mentioned defects of the polymer-modified cementitious materials, studying and making a new kind of polymer is important.
Taking the expense and the construction condition into consideration and making the least influence on the research, we used different ethanol, ethylene glycol, diethylene glycol, lauryl alcohol and stearyl alcohol to carry on the etherification in this research. The Polyacrylic ester (PAE) was made under the consideration of the components, the dosage increase and the compatible situation. The polymer-modified cementitious materials were executed to evaluate the properties of flowability, mechanics, durability and pore structure with various PAE composition and dosages. The test results showed that the Polyacrylic ester (PAE) which was made from five species of ethylene glycol had the best effect, and that the optimum conditions of the reaction were determined according to the molar ratio of acrylic acid to ethylene glycol by 1: 0.2. As far as the workability was concerned, the flowability was increased by adding the amount of PAE. As to the hardened property, if PAE was dosed with 0.1% by weight of cement, the compressive strength of polymer-modified cementitious materials could improve up to 7%~12% of the OPC. The polymer-modified cementitious materials would make better water absorption, flexural strength and adhesion strength. Besides, the penetration of polymer modified concrete was lowered by adding RCPT. SEM micrographs showed that hardened Polymer formed the film layers in the cement-based composites. This sealed structure helped to improve the durability of the cementitious materials. But in this research, we only used typeⅠPortland cement to proceed experiments, so it still needed more information to evaluate the whole effects.
關鍵字(中) ★ 丙烯酸酯聚合物
★ 水泥基材
★ 酯化反應
關鍵字(英) ★ esterification
★ cementitious materials
★ Polyacrylic ester
論文目次 目 錄
目錄 Ⅰ
圖目錄 Ⅳ
表目錄 Ⅵ
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究內容 2
第二章 文獻回顧 4
2.1 高分子聚合物發展概況 4
2.1.1 聚合物歷史發展沿革 4
2.1.2 聚合物砂漿(混凝土)在國際上之發展 5
2.2 聚合物水泥複合材料類型 7
2.2.1 聚合物應用類型 7
2.2.2 聚合物改質砂漿及混凝土之聚合物類型 9
2.3 聚合物反應機理 12
2.3.1 聚合物與水泥的物理性反應 12
2.3.2 聚合物與水泥的化學性反應 12
2.3.3 聚合物改質機理模式 14
2.4聚合物改質之作用 16
2.5 丙烯酸系聚合物發展 18
2.5.1 丙烯酸系聚合物與水泥之改質機理 18
2.5.2 丙烯酸系聚合物優勢 19
2.5.3 水溶性聚合物摻量對改質效用之限制 20
2.5.4 丙烯酸系相關文獻概述 21
第三章 試驗計畫 26
3.1 試驗材料 26
3.2 主要試驗設備 32
3.3 實驗流程與變數 38
3.3.1 試驗流程 38
3.3.2 試驗變數 40
3.4 試驗項目及方法 43
3.4.1 聚合物基本試驗 43
3.4.2 水泥漿試驗 45
3.4.3 水泥砂漿試驗 46
3.4.4 混凝土試驗 49
第四章 結果與討論 53
4.1 聚合物基本性質 53
4.1.1 聚合物酯化率 53
4.1.2 聚合物比重、烘乾殘餘物含量及pH值 54
4.2 丙烯酸酯聚合物改質水泥漿體性質 55
4.2.1 新拌情形 55
4.2.2 改質水泥漿工作性 56
4.2.3 凝結時間 67
4.2.4 液態丙烯酸酯改質水泥漿體硬固性質 69
4.2.6 酯化率與抗壓強度關係 74
4.2.7 丙烯酸酯狀態及pH值對改質水泥漿體抗壓強度、凝結時間影響 75
4.2.8 丙烯酸酯聚合物改質水泥漿體性質試驗小結 77
4.3丙烯酸酯聚合物改質水泥砂漿性質 79
4.3.1 砂漿流度值 79
4.3.2 吸水率 79
4.3.3 抗彎強度 82
4.3.4 抗壓強度 83
4.3.5 黏結強度 85
4.3.6 乾縮(Drying shrinkage) 86
4.3.7 水泥砂漿健性試驗 88
4.3.8 丙烯酸酯聚合物改質水泥砂體性質試驗小結 89
4.4丙烯酸酯聚合物改質混凝土性質 91
4.4.1 新拌性質 91
4.4.2 抗壓強度 92
4.4.3 非破壞檢測試驗 93
4.4.4 快速氯離子穿透試驗(RCPT) 96
4.5 改質水泥基材微觀分析 97
第五章 結論與建議 101
參考文獻 104
參考文獻 1.Fowler, D.W., “Polymer in concrete:a vision for the 21st century,” Cement and Concrete Composites, Vol 21, No. 5, pp. 449-452 (1999).
2.Ohama, Y., “Recent progress in concrete-polymer composites,” Advn Cem Bas Mat., Vol. 5, pp. 31-40 (1997).
3.Ohama, Y., “Polymer-based admixyures,” Cement and Concrete Composites, Vol. 20, NO. 2, pp. 189-212 (1998).
4.The Dow Chemical Company, http://www.dow.com/ .
5.徐武軍,「高分子材料導論」,台北五南圖書出版(股)公司 (2004)。
6.Afridi, M. U. K., Ohama, Y., Demura, K., and Iqbal, M. Z.,“Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars,” Cement and Concrete Research, Vol. 33, No. 11, pp. 1715-1721 (2003).
7.Schulze, J., and Killermann, O., “Long-term performance of redispersible powders in mortars,” Cement and Concrete Research, Vol. 31, No. 3, pp. 357-362 (2001).
8.Afridi, M. U. K., Ohama, Y., Demura, K., and Iqbal, M. Z.,“A note on the comparison of crack resistance of Ca(OH)2 crystals of unmodified and polymer-modified mortars in carbonated atmosphere,” Cement and Concrete Research, Vol. 31, No. 11, pp. 1643-1645 (2001).
9.Al-Zahrani, M. M., Maslehuddin, M., Al-Dulaijan, S. U., and Ibrahim, M., “Mechanical properties and durability characteristics of polymer- and cement-based repair materials,” Cement and Concrete Composites, Vol. 25, No. 4, pp. 527-537 (2003).
10.Afridi, M. U. K., Ohama, Y., Demura, K., and Iqbal, M. Z.,“Hydrogarent-type cubic crystals in polymer-modified martars,” Cement and Concrete Research, Vol. 27, No.12, pp. 1787-1789 (1997).
11.Chandra, S., and Flodin, P., “Interactions of polymers and organic admixtures on portland cement hydration,” Cement and Concrete Research, Vol. 17, No. 6, pp. 875-890 (1987).
12.Sakai, E., and Sugita, J., “Composite mechanism of polymer modified cement,” Cement and Concrete Research, Vol. 25, No. 1, pp. 127-135 (1995).
13.Mindess, S., Young, J. F., and Darwin, D., Concrete. 2nd ed., Prentice-Hall, Inc., Upper Saddle River, New Jersey, pp. 583-598 (2002).
14.Fu, X., and Chung, D. L., “Submicron carbon filament cement-matrix composites for electromagnetic interference shielding,” Cement and Concrete Research, Vol. 26, No. 10, pp. 1467-1472 (1996).
15.Fichet, R. O., Gauthier, C., Clamen, G., and Boch, P., “Microstructural aspects in a polymer-modified cement,” Cement and Concrete Research, Vol. 28, No. 12, pp. 1687-1693 (1998).
16.Rha, C. Y., Kim, C. E., Lee, C. S., Kim, K. I., and Lee, S. K., “Preparation and characterization of absorbent polymer-cement composites,” Cement and Concrete Research, Vol. 29, No. 2, pp. 231-236 (1999).
17.Silva, D. A., and Monteiro, P. J. M., “The influence of polymers on the hydration of portland cement phases analyzed by soft X-ray transmission microscopy,” Cement and Concrete Research, Vol. 36, No. 8, pp. 1501-1507 (2006).
18.Silva, D. A., John, V. M., Ribeiro, J. L. D., and Roman, H. R., “Pore size distribution of hydrated cement pastes modified with polymers,” Cement and Concrete Research, Vol. 31, No. 8, pp. 1177-1184 (2001).
19.Kim, J. H., and Robertson, R. E., “Prevention of air void formation in polymer-modified cement mortar by pre-wetting,” Cement and Concrete Research, Vol. 27, No. 2, pp. 171-176 (1997).
20.Gorninski, J. P., Molin, D. C., and Kazmierczak, C. S., “Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and portland cement concrete,” Cement and Concrete Research, Vol. 34, No. 11, pp. 2191-2195 (2004).
21.Jenni, A., Holzer, L., Zurbriggen, R., and Herwegh, M., “Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars,” Cement and Concrete Research, Vol. 35, No. 1, pp. 35-50 (2005).
22.Beeldens, A., Monteny, K., Vincke, E., Belie, N. D., Gemert, D. V., Taerwe, L., and Verstraete, W., “Resistance to biogenic sulphuric acid corrosion of polymer-modified mortars,” Cement and Concrete Composites, Vol. 23, No. 1, pp. 47-56 (2001).
23.Martinez-Ramirez, S., Zamarad, A., Thompsonb, G. E., and Moore, B., “Organic and inorganic concrete under SO2 pollutant exposure,” Cement and Concrete Research, Vol. 37, No. 10, pp. 933-937 (2002).
24.Vincke, E., Wanseele, E. V., Monteny, J., Beeldens, A., Belie, N. D., Taerwe, L., Gemert, D. V., and Verstraete, W., “Influence of polymer addition on biogenic sulfuric acid attack of concrete,” International Biodeterioration & Biodegradation, Vol. 49, pp. 283 - 292 (2002).
25.Monteny, J., Belie, N., Vincke, E., Verstraete, W., and Taerwe, L., “Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete,” Cement and Concrete Research, Vol. 31, No. 9, pp. 1359-1365 (2001).
26.馬齊文,「粉體組成對活性粉混凝土微巨觀力學性質之影響與高分子改質之效益」,國立台灣大學土木工程學研究所博士論文 (2005)。
27.Rodrigues, F. A., and Joekes, I., “Macro-defect free cements- a new approach,” Cement and Concrete Research, Vol. 28, No. 6, pp. 877-885 (1998)..
28.Santos, R. S., Rodrigues, F. A., Segre, N., and Joekes, I., “Macro-defect free cements Influence of poly(vinyl alcohol), cement type, and silica fume,” Cement and Concrete Research, Vol. 29, No. 5, pp. 747–751 (1999).
29.Schulze, J., “Influence of water-cement ratio and cement content on the properties of polymer-modified mortars,” Cement and Concrete Research, Vol. 29, No. 6, pp. 909-915 (1999).
30.Drabik, M., Mojumdar, S. C., and Galikova, L., “Change of thermal events of macro defect-free (MDF) cements due to the deterioration in the moist atmosphere,” Cement and Concrete Research, Vol. 31, No. 5, pp. 743-747 (2001).
31.Walters, D. G., “Comparison of latex-modified portland cement mortars,” ACI Materials Journal, Vol. 87, No. 4, pp. 371-377 (1990).
32.Gao, J. M., Qian, C. X., Wang, B., and Morino, K., “Experimental Study on Properties of Polymer-Modified Cement Mortars with Silica Fume,” Cement and Concrete Research, Vol. 32, No. 1, pp. 41-45 (2002).
33.林世堂,「水溶性樹脂對水泥基複合材料的早期收縮開裂敏感性能的巨、微觀探討」,國立海洋大學材料工程研究所博士資格考審查資料 (2007)。
34.郭文田,「添加強塑劑對水泥材料水化及其早期行為之影響」,國立中央大學研究所博士論文 (2000)。
35.Kantro, D. L., “Influence of water-Reducing admixtures on properties of cement paste - a miniature slump test,” Cement Concrete and Aggregates, Vol. 2, No. 2, pp. 95-108 (1980).
36.黃國祥,「羧酸強塑劑於水泥砂漿中最佳劑量之研究」,國立屏東科技大學土木工程系碩士論文 (2003)。
指導教授 李釗(Chau Lee) 審核日期 2008-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明