博碩士論文 89423028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:126 、訪客IP:3.144.99.134
姓名 黃彥博(Yen-Bo Huang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 偵測灰階影像中的人造物體
(Detecting Man-Made Objects in Gray-Level Images)
相關論文
★ 彩色影像視覺密碼之製作★ 應用遺傳演算法於向量量化之新編碼簿設計法
★ 基於非擴展式視覺密碼之浮水印技術★ 無須訓練的向量量化編碼簿設計法
★ 不需擴展的彩色視覺密碼★ 擴充固定比例(CPPI)與時間不變性投資組合保險策略(TIPP)於投資組合之應用
★ 演化式賽局於投資策略之研究★ 基於灰階視覺密碼之浮水印技術
★ 應用遺傳演算法新的效率編碼模式解決資源/生產分配問題★ 彩色影像之擴充型視覺密碼
★ 利用遺傳演算法對股價反轉點的預測★ 運用漸進模糊類神經網路於預測每股盈餘 成長率之研究
★ 數位影像與文件保護機制之設計-以視覺式秘密分享和資訊隱藏為基礎★ 基於目標規劃與統計學的視覺密碼及其在著作權保護的應用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 戰場偵察長久以來一直都是戰術思維的重心,近年來有越來越多的偵察任務是利用機器來完成的,這些機器配有內建式感應器及自動目標辨識系統。
  我們提出一個架構來實作自動目標辨識系統的偵測function利用梯度影像分析及直線偵測技術,將灰階影像中人造物體的概略輪廓描繪出來。首先,我們使用Sobel運算以取得影像的梯度,接著使用含有區域法則的模糊影像對比增強以去除背景及增強訊號弱的及訊號強的邊界;經過二元化、小區塊去除、及細線化後,我們使用改良式霍式轉換以偵測長的直線;利用這些直線,可以標示出可疑區域並利用這些區域以產生初始的物件輪廓;最後,我們利用適應式主動輪廓模型來進行輪廓趨近。
  我們將之實作於一般的個人電腦上,而實驗結果顯示此架構能適用於大多數的環境條件下。
摘要(英) Reconnaissance has for centuries been at the heart of all thinking about infantry tactics. Nowadays, reconnaissance is increasingly assigned to machines. These machines are equipped with build-in sensors and automatic target recognition system (ATR) in it.
We proposed a framework to perform the detecting phase in ATR systems. This system can label approximate man-made object contours in gray-level images via gradient image analysis and straight lines detection. We first use the Sobel operator to produce a gradient image. Then, use local fuzzy image contrast enhancement with a region criterion to degrade background and enhance both weak and strong edges. After the processes of binarization, small component removal, and edge thinning, we apply the modified Hough transform to detect long straight lines. Via these lines, we can label the region of interest and use them to produce initial object contours. At last of all, we apply the adaptive active contour model to perform contour approximation.
Our experiment is performed on a PC and the experimental result shows that it works well under most environmental condition.
關鍵字(中) ★ 適應式主動輪廓模型
★ 改良式霍氏轉換
★ 模糊影像對比增強
★ 梯度影像分析
★ 自動目標辨識
★ 人造物體偵測
關鍵字(英) ★ Automatic target recognition
★ Man-made object detection
★ Fuzzy image contrast enhancement
★ Modified Hough transform
★ Adaptive active contour model
★ Gradient image analysis
論文目次 Contents
Contents I
List of Figures II
Abstract III
Chapter 1 Introduction 1
Chapter 2 Related works 4
Chapter 3 Proposed framework 6
3.1 Contrast stretching 6
3.2 Edge detection 7
3.3 Local fuzzy contrast enhancement 9
3.4 Bi-level thresholding 14
3.5 Small component removal 14
3.6 Thinning 16
3.7 Straight line detection 18
3.8 Region of interest labeling 23
3.9 Initial contour labeling 26
3.10 Contour approximation 28
Chapter 4 Experimental results 38
Chapter 5 Conclusion 47
Reference 48
參考文獻 1.Sameh M. Yamany, Aly A. Farag, Shin-Yi Hsu, [1999]. “A fuzzy hyperspectral classifier for automatic target recognition (ATR) system”, Pattern Recognition Letters, Vol. 20, pp. 1431-1438.
2.Alexander Toet, Frank L. Kooi, Piet Bijl, J. Mathieu Valeton, [1998]. “Visual conspicuity determines human target acquisition performance”, Optical Engineering, Vol. 37, No. 7, pp. 1969-1975.
3.Jen-Ming Chen, Jose A. Ventura, Chih-Hang Wu, [1996]. “ Segmentation of planar curves into circular arcs and line segments”, Image and Vision Computing, Vol. 14, pp. 71-83.
4.Edited by Armin Fruen, Olaf Kuebler, Peggy Agouris, [1995]. Automatic extraction of man-made objects from aerial and space images (I, II), Basel; Boston; Berlin: Birkhauser Verlag.
5.D. Doukat, A. Lichioui, A. Fares, A. Bouzid, [2001]. “Matching technique of objects in radars with stereoscopic vision”, Journal of Microwaves and Optoelectronics, Vol. 2, No. 3, pp. 46-56.
6.Anthony Hoogs, Joseph Mundy, [2000]. “An integrated boundary and region approach to perceptual grouping”, In proceedings of 15th International Conference on Pattern Recognition, IEEE, Vol. 1, pp. 284-290.
7.Sridhar Srinivasan, Laveen Kanal, [1997]. “Qualitative landmark recognition using visual cues”, Pattern Recognition Letters, vol. 18, pp. 1405-1414.
8.C. Schiekel, [1999]. “A fast traffic sign recognition algorithm for gray value images”, Computer Analysis of Images and Patterns, Lecture Notes in Computer Science 1689, Springer, pp. 588-595.
9.Santanu Chaudhury, Anjana Roy, Lipika Dey, [1999]. “An MIMD algorithm for constant curvature feature extraction using curvature based data partitioning”, Pattern Recognition Letters, vol. 20, pp. 573-583.
10.Rafael C. Gonzalez, Richard E. Woods, [1993]. Digital image processing, Addison-Wesley, Reading, MA.
11.S. Pal, R. King, [1980]. “Image enhancement using fuzzy sets”, Electronics Letters, Vol. 16, pp. 376-378.
12.T. Y. Zhang, C. Y. Suen, [1984]. “A fast parallel algorithm for thinning digital patterns”, Comm. ACM, vol. 27, no. 3, pp. 236-239.
13.P. V. C. Hough, [1962]. “Methods and Means for Recognizing Complex Patterns.” U.S. Patent 3,069,654.
14.Opas Chutatape, Linfeng Guo, [1999]. “A modified Hough transform for line detection and its performance”, Pattern Recognition, Vol. 32, pp. 181-192.
15.R. O. Duda, P. E. Hart, [1972]. “Use of the Hough transformation to detect lines and curves in pictures”, Comm. ACM, vol. 15 no.1, pp. 11-15.
16.John Immerkaer, [1998]. “Some remarks on the straight line Hough transform”, Pattern Recognition Letters, vol. 19, pp. 1133-1135.
17.Heikki Kälviäinen, Petri Hivonen, Lei Xu, Erkki Oja, [1995]. “Probabilistic and non-probabilistic Hough transforms: overview and comparisons”, Image and Vision Computing, Vol. 13 No. 4, pp. 239-252.
18.Lei Xu, E. Oja, P. Kultanen, [1990]. “A new curve detection method: randomized Hough Transform (RHT)”, Pattern Recognition Letters, vol. 11 No. 5, pp. 331-338.
19.M. Kass, A. Witkin, D. Terzopoulos, [1987]. “Snakes: active contour models”, International Journal of Computer Vision, Vol. 1, No. 4, pp. 321-331.
20.Lilian Ji, Hong Yan, [2002]. “Attractable snakes based on the greedy algorithm for contour extraction”, Pattern Recognition, Vol. 35, pp. 791-806.
21.Chun Leung Lam, Shiu Yin Yuen, [1998]. “An unbiased active contour algorithm for object tracking”, Pattern Recognition Letters, Vol. 19, pp. 491-498.
22.J. Canny, [1986]. “A computational approach to edge detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, pp. 679-698.
23.D. J. Williams, M. Shah, [1992]. “A fast algorithm for active contours and curvature estimation”, CVGIP: Image Understanding, Vol. 55, No. 1, pp. 14-26.
24.Kin-Man Lam, Wai-Pak Choi, Wan-Chi Siu, [2001]. “An adaptive active contour model for highly irregular boundaries”, Pattern Recognition, Vol. 34, pp. 323-331.
指導教授 侯永昌(Young-Chang Hou) 審核日期 2002-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明