參考文獻 |
[1] M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
Ordering Points to Identify the Clustering Structure”, Proc. of the
1999 International Conference on Management of Data, pp. 49-60, 1999.
[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic
Subspace Clustering of High Dimensional Data for Data Mining
Applications”.Proc. of the ACM SIGMOD Conference on Management of Data,
pp. 94-104, 1998.
[3] Rakesh Agrawal and Prabhakar Ragaran, “A Linear Method for Deviation
Detection in Large Databases”, Proc. of KDD95, 1995.
[4] Robin D. Burke, Kristian J. Hammond, Vladimir Kulyukin, et al.,
“Question Answering from Frequently-Asked Question Files: Experiences
with FAQ Finder System”, AI Magazine, 18, 2, 1996.
[5] Michael J. A. Berry and Gordon S. Linoff, “Mastering Data Mining: The
Art & Science of Customer Relationship Management”, Wei Keg Publishing
Co. 2000.
[6] Michael J. A. Berry and Gordon S. Linoff, “Data Mining Techniques: for
Marketing, Sales, and Customer Support”, Wei Keg Publishing Co. 1997.
[7] Alex Berson, Stephen Smith and Kurt Thearling, “Building Data Mining
Applications for CRM”, McGraw-Hill Inc., 2000.
[8] R. Duda and P. Hart, “Pattern Classification and Scene Analysis”, New
York: Wiely, 1973.
[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu, “A
Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise”, Proc.of KDD96: pp. 226-231, 1996.
[10] D. Fisher, “Knowledge Acquisition Via Incremental Conceptual
Clustering” Machine Learning, 2:139-172, 1987.
[11] Tom Fawcett and Foster Provost, “Adaptive Fraud Detection”, Proc. of
KDD97, pp. 1-28, 1997.
[12] J Gennari, P. Langley, and D. Fisher,. “Models of Incremental Concept
Formation”, Artificial Intelligence,40:11-61, 1989.
[13] S. Guha, R. Rastogi, and K. Shim, “Cure: An Efficient Clustering
Algorithm for Large Databases”. Proc. of SIGMOD’’98, pp 73-84, 1998.
[14] S. Guha, R. Rastogi, and K. Shim, "ROCK: A Robust Clustering Algorithm
for Categorical Attributes", Proc. of the 15th International Conference
on Data Engineering, pp. 512-521 ,April 1999.
[15] J. Han and M. Kamber, “Data Mining: Concepts and Techniques”, Morgan
Kaufmann Publishers, 2000.
[16] A. Hinneburg and D. A. Keim, “An Efficient Approach to Clustering in
Large Multimedia Databases with Noise”, Proc. of KDD98, pp. 58-65, 1998.
[17] T. Kohonen, “A Simple Paradigm for the Self-Organized Formation of
Structured Feature Maps”, Competition and Cooperation in Neural Nets,
Berlin: Springer-Verlag, 1982.
[18] Morgan Kaufmann, “Case-Based Reasoning”, California, 1993.
[19] S. Kesh, "Case Based Reasoning."; Journal of Systems Management; Vol.46,
Iss.4; pp.14-19, 1995.
[20] George Karypis, Eui-Hong(Sam) Han and Vipin Kumar, "Chameleon:
Hierarchical Clustering Using Dynamic Modeling", IEEE Computer, vol. 32,
no. 8,pp. 68-74, Aug. 1999.
[21] Edwin M. Knorr and Raymond T. Ng, “Algorithms for Mining Distance-Based
Outliers in Large Datasets”, Proc. of the 24th VLDB Conference, 1998.
[22] L. Kaufman and P. J. Rousseeuw, “Finding Groups in Data: An Introduction
to Cluster Analysis”, John Wiley & Sons, 1990.
[23] J. MacQueen, "Some Methods for Classification and Analysis of
Multivariate Observations", Proc. of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, pages 281-297, 1967.
[24] Raymond T. Ng and J. Han," Efficient and Effective Clustering Methods for
Spatial Data Mining, " Proc. of the 20th VLDB, pp. 144-155, 1994.
[25] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “WaveCluster: A
Multiresolution Clustering Approach for Very Large Spatial Databases”,
Proc. On the 24th VLDB Conference, pp. 428-439, Aug 1998.
[26] Richard Wheeler, Stuart Aitken, “Multiple Algorithms for Fraud
Detection,” Knowledge-Based Systems, Volume: 13, Issue: 2-3, April,
2000, pp.93-99.
[27] W. Wang, J. Yang, R. Muntz, “STING: A Statistical Information Grid
Approach to Spatial Data Mining”, Proc. of the 23th VLDB Conference, pp.
186-195, 1997.
[28] P. S. Yu, J. Han and M. S. Chen, “Data Mining: An Overview from a
Database Perspective”, Proc. of the IEEE Transactions on Knowledge and
Data Engineering Vol 8, no. 6,pp. 866-883 , Dec. 1996.
[29] Huang, Zhexue, "Extensions to the K-Means Algorithm For Clustering large
Data sets with Categorical values", Proc. of KDD98, pp. 283-304, 1998.
[30] Tian Zhang, Raghu Ramakrishnan and Miron Livny "BIRCH: An Efficient Data
Clustering Method for Very Large Databases", Proc. of the 1996 ACM SIGMOD
International Conference on Management of Data, pp. 103-114, 1996.
[31] 黃琮盛,以個人消費行為預測信用卡詐欺事件之研究,中央大學資訊管理研究所,碩
士論文,民國90年。
[32] 陳志安,以屬性導向歸納法挖掘資料異常之研究,中央大學資訊管理研究所,碩士論
文,民國89年。
[33] 高慶斌,應用於基因表現探勘之高效率業集方法及其效能評估,成功大學資訊工程研
究所,碩士論文,民國90年。
[34] 陳南光,依學生偏好及學習狀態建構之學習輔助者與知識協尋系統,中央大學資訊工
程研究所,碩士論文,民國89年。
[35] 年盜刷 30 億,台灣成信用卡為冒集團天堂,中國法制日報,民國90年。
[36] 鄭哲政,信用卡面面觀之二 信用卡詐欺,東森新聞報,
http://www.ettoday.com.tw/。
[37] 聯合信用卡中心,http://www.nccc.com.tw/。 |