參考文獻 |
[1] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami, “An interval classifier for database mining applications,” In Proc. 18th Int. Conf. Very Large Data Bases, pp. 560-573, Aug. 1992.
[2] R. Agrawal, and R. Srikant, “Fast algorithms for mining association rules,” In Proc. of 1994 Int. Conf. Very Large Data Bases, pp. 487-499, 1994.
[3] R. Agrawal, and R. Srikant, “Mining sequential patterns,” In Proc. of 1995 Int. Conf. Data Engineering, pp. 3-14, 1995.
[4] W. H. Au, and K. C. C. Chan, “Mining fuzzy association rules,” In Proc. 6th Int. Conf. Information Knowledge Management, Las Vegas, NV, pp. 209-215, 1997.
[5] W. H. Au, and K. C. C. Chan, “An effective algorithm for discovering fuzzy rules in relational databases,” In Proc. IEEE Int. Conf. Fuzzy Systems, vol. II, pp. 1314-1319, 1998.
[6] W. H. Au, and K. C. C. Chan, “FARM: A data mining system for discovering fuzzy association rules,” In Proc. FUZZ-IEEE’99, vol. 3, pp. 22-25, 1999.
[7] W. H. Au, and K. C. C. Chan, “Mining fuzzy association rules in a bank-account database,” IEEE Transaction on Fuzzy Systems, vol. 11, pp. 238-248, 2003.
[8] R. E. Bellman and L. A. Zadeh, “Decision-making in a fuzzy environment,” Management Science, vol. 17(4), pp. 141-164, 1970.
[9] G. Bojadziev and M. Bojadziev, “Fuzzy logic for business, finance, and management,” World Scientific Publishing Co., Inc. River Edge, NJ, USA, 1997.
[10] P. K. Chan and S. J. Stolfo, “Learning arbiter and combiner trees from partitioned data for scaling machine learning,” In Proc. First Int. Conf. Knowledge Discovery and Data Mining (KDD ‘95), pp. 39-44, Aug. 1995.
[11] D. Cheung, S.D. Lee, B. Kao, “A general incremental technique for maintaining discovered association rules,” In the Proc. of the Fifth Int. Conf. On Database Systems For Advanced Applications (DASFAA '97), pp. 185-194, Melbourne, Australia. March 1997.
[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to algorithms”, 2nd Edition, MIT Press, 2001.
[13] G. Chen, and Q. Wei, “Fuzzy association rules and the extended mining algorithms,” Information Sciences, vol. 147, pp. 201-228, 2002.
[14] M. S. Chen and P. S. Yu, “Using multi-attribute predicates for mining classification rules,” IBM Research Report, 1995.
[15] M. S. Chen, J. Han, and P. S. Yu, “Data mining: an overview from a database perspective,” IEEE Transactions on Knowledge and Data Engineering, vol. 8(6), pp. 866-883, 1996.
[16] Y. L. Chen, S. S. Chen, and P. Y. Hsu, “Mining hybrid sequential patterns and sequential rules,” Information Systems, vol. 27, no. 5, pp. 345-362, 2002.
[17] Y. L. Chen, M. C. Chiang, and M. T. Ko, “Discovering time-interval sequential patterns in sequence databases,” Expert Systems with Applications, vol. 25, no. 3, pp. 343-354, 2003.
[18] Y. L. Chen, and T. C. K. Huang, “Discovering fuzzy time-interval sequential patterns in sequence databases,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 35(5), pp. 959-972, 2005.
[19] S. L. Chuang and L. F. Chien, “Enriching web taxonomies through subject categorization of query terms from search engine logs,” Decision Support Systems, vol. 35, pp. 113-127, 2003.
[20] Y. H. Cho and J. K. Kim, “Application of web usage mining and product taxonomy to collaborative recommendations in e-commerce,” Expert Systems with Applications, vol. 26, pp. 233-246, 2004.
[21] A. W. C. Fu, M. H. Wong, S. C. Sze, W. C. Wong, W. L. Wong, and W. K. Yu, Finding fuzzy sets for the mining of fuzzy association rules for numerical attributes, In Proc. Int. Symposium Intelligent Data Engineering Learning (IDEAL’98), Hong Kong, pp. 263-268, 1998.
[22] A. Gupta, V. Harinarayan, and D. Quass, “Aggregate-query processing in data warehousing environment,” In Proc. 21st Int. Conf. Very Large Databases, pp. 358-369, Zurich, Sept., 1995.
[23] M. Garofalakis, R. Rastogi, and K. Shim, “SPIRIT: sequential pattern mining with regular expression constraint”, In Int. Conf. Very Large Databases, Morgan Kaufmann, pp. 223-234, 1999.
[24] T. P. Hong, C. S. Kuo, and S. C. Chi, “Mining association rules from quantitative data,” Intelligent Data Analysis, vol. 3, pp. 363-376, 1999.
[25] T. P. Hong, C. S. Kuo, and S. C. Chi, “Mining fuzzy sequential patterns from quantitative data,” In The 1999 IEEE Int. Conf. on Systems, Man, and Cybernetics, vol. 3, pp. 962-966, 1999.
[26] T. P. Hong, K. Y. Lin, and S. L. Wang, “Fuzzy data mining for interesting generalized association rules,” Fuzzy Set and Systems, vol. 138, pp. 255-269, 2003.
[27] T. P. Hong, K. Y. Lin, and B. C. Chien, “Mining fuzzy multiple-level association rules from quantitative data,” Applied Intelligence, vol. 18, pp. 79-90, 2003.
[28] V. Harinarayan, J. D. Ullman, and A. Rajaraman, “Implementing data cubes efficiently,” In Proc. 1996 ACM SIGMOD Int. Conf. Management Data, pp. 205-216, Montreal, Canada, June 1996.
[29] J. Han, Y. Cai, and N. Cercone, “Data-driven discovery of quantitative rules in relational databases,” IEEE Transaction on Knowledge and Data Engineering, vol. 5, pp. 29-40, 1993.
[30] J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong, K. Koperski, D. Li, Y. Lu, A. Rajan, N. Stefanovic, B. Xia, and O. R. Zaiane, “DBMiner: a system for mining knowledge in large relational databases,” In Proc. Int. Conf. Data Mining and Knowledge Discovery (KDD ‘96), pp. 250-255, Portland, Ore., Aug. 1996.
[31] J. Han and Y. Fu, “Exploration of the power of attribute-oriented induction in data mining,” U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, eds., Advances in Knowledge Discovery and Data Mining, pp. 399-421, AAAI/MIT Press, 1996.
[32] J. Han and Y. Fu, “Mining multiple-level association rules in large databases,” IEEE Transaction on Knowledge and Data Engineering, vol. 11(5), pp. 1-8, 1999.
[33] J. Han, G. Dong, and Y. Yin, “Efficient mining of partial periodic patterns in time series database,” In Proc. of the Int. Conf. on Data Engineering, pp. 106-115, 1999.
[34] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C. Hsu, “FreeSpan: frequent pattern-projected sequential pattern mining,” In Proc. of 2000 Int. Conf. on Knowledge Discovery and Data Mining, pp. 355-359, 2000.
[35] J. Han, and M. Kamber, “Data mining: concepts and techniques,” Academic Press, 2001.
[36] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without candidate generation: a frequent-pattern tree approach,” Data Mining and Knowledge Discovery, vol. 8(1), pp. 53-87, 2004.
[37] M. Kamber, J. Han, and J. Y. Chiang, “Metarule-guided mining of multi-dimensional association rules using data cubes,” In Proc. 1997 Int. Conf. Knowledge Discovery and Data Mining (KDD ‘97), pp. 207-210, Newport Beach, CA, Aug. 1997.
[38] C. Kim, J. H. Lim, R. Ng, and K. Shim, “SQUIRE: sequential pattern mining with quantities,” In Proc. of the 20th Int. Conf. on Data Engineering, Boston, USA, pp. 827-827, 2004.
[39] C. M. Kuok, A. Fu, and M. H. Wong, “Mining fuzzy association rules in databases,” SIGMOD Record, vol. 27(1), pp. 41-46, 1998.
[40] J. H. Lee, and H. L. Kwang, “An extension of association rules using fuzzy sets,” presented at the IFSA’97, Prague, Czech Republic, 1997.
[41] J. W. T. Lee, “An ordinal framework for data mining of fuzzy rules,” In FUZZ IEEE 2000, San Antonio, TX, pp. 399-404, 2000.
[42] G. Liu, H. Lu, Y. Xu, and J. X. Yu, “Ascending frequency ordered prefix-tree: efficient mining of frequent patterns,” In Proc. of the Eighth Int. Conf. on Database Systems for Advanced Applications, pp. 65-72, 2003.
[43] Y. Li, Z. A. Bandar, and D. McLean, “An approach for measuring semantic similarity between words using multiple information sources,” IEEE Transaction on Knowledge and Data Engineering, vol. 15(4), pp. 871-882, 2003.
[44] J. Liu, Y. Pan, K. Wang, and J. Han, “Mining frequent item sets by opportunistic projection,” In Proc. of 2002 Int. Conf. on Knowledge Discovery in Databases (KDD'02), pp. 229-238, Edmonton, Canada, July 2002.
[45] M. Mehta, R. Agrawal, and J. Rissanen, “SLIO: a fast scalable classifier for data mining,” In Proc. Int. Conf. Extending Database Technology (EDBT ‘96), Avignon, France, Mar. 1996.
[46] H. Mannila and H. Toivonen, “Levelwise search and borders of theories in knowledge discovery,” Data Mining and Knowledge Discovery, pp. 241-258, 1997.
[47] H. Mannila, H. Toivonen, and A.I. Verkamo, “Discovery of frequent episodes in event sequences,” Data Mining and Knowledge Discovery, pp. 259-289, 1997.
[48] S. Medasani, J. Kim, and R. Krishnapuram, “An overview of membership function generation techniques for pattern recognition,” International Journal of Approximate Reasoning, vol. 19, pp. 391-417, 1998.
[49] S. Mitra, S. K. Pal, and P. Mitra, “Data mining in soft computing framework: a survey,” IEEE Transaction on Neural Networks, vol. 13(1), pp. 3-14, 2002.
[50] R. T. Ng, L. V. S. Lakshamanan, J. Han, “Exploratory mining and pruning optimizations of constrained associations rules,” In Proc. 1998 ACM SIGMOD Int. Conf. Management of Data, pp. 13-24, Seattle, Washington, June 1998.
[51] G. Piatesky-Shapiro, “Discovery, analysis, and presentation of strong rules,” G. Piatesky-Shapiro and W. J. Frawley, eds., Knowledge Discovery in Databases, pp. 229-238. AAAI/MIT Press, 1991.
[52] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent closed itemsets for association rules,” In Proc. Seventh Int. Conf. Database Theory (ICDT ’99), pp. 398-416, Jan. 1999.
[53] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas, “Incremental and interactive sequence mining,” In Conf. on Information and Knowledge Management Proc. of the eighth Int. Conf. on Information and knowledge management, pp. 251-258, Kansas City, Missouri, United States, 1999.
[54] H. Pinto J. Han J. Pei, and K. Wang, “Multi-dimensional sequential pattern mining,” In Proc. of the Int. Conf. on Information and Knowledge Management, pp. 81-88, 2001.
[55] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu, “Mining access patterns efficiently from web logs,” In Proc. of 2000 Pacific-Asia Conf. on Knowledge Discovery and Data Mining, pp. 396-407, 2000.
[56] J. Pei, J. Han, and W. Wang, “Mining sequential patterns with constraints in large databases,” In Proc. of the Int. Conf. on Information and Knowledge Management, pp. 18-25, 2002.
[57] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. –C. Hsu, “ Mining sequential patterns by pattern-growth: the prefixspan approach,” IEEE Transaction on Knowledge and Data Engineering, vol. 16(11), pp. 1424-1440, 2004.
[58] J. R. Quinlan, “Introduction of decision trees,” Machine Learning, vol. 1, pp. 81-106, 1986.
[59] J. R. Quinlan, “C4.5: Programs for machine learning”, Morgan Kaufmann, 1993.
[60] T. J. Ross, “Fuzzy logic with engineering applications”, McGraw-Hill, Inc. 1995.
[61] Y. U. Ryu, “Dynamic construction of product taxonomy hierarchies for assisted shopping in the electronic marketplace,” Hawaii Int. Conf. on System Sciences, vol. 5, pp. 196-204, 1998.
[62] R. Srikant and R. Agrawal, “Mining generalized association rules,” In Proc. 1995 Int. Conf. Very Large Data Bases, pp. 407-419, Zurich, Sept. 1995.
[63] R. Srikant, and R. Agrawal, “Mining sequential patterns: generalizations and performance improvements,” In Proc. of the Fifth Int. Conf. on Extending Database Technology, pp. 3-17, 1996.
[64] R. Srikant, and R. Agrawal, Mining quantitative association rules in large relational tables, In Proc. of the 1996 ACM SIGMOD Int. Conf. on Management of Data, pp. 1-12, 1996.
[65] M. Vazirgiannis, “A classification and relationship extraction scheme for relational databases based on fuzzy logic,” In Proc. Research Development Knowledge Discovery Data Mining, Melbourne, Australia, pp. 414-416, 1998.
[66] J. Widom, “Research problems in data warehousing,” In Proc. Fourth Int. Conf. Information and Knowledge Management, pp. 25-30, Baltimore, Nov. 1995.
[67] H. J. Watson and M. N. Frolick, “Determining information requirements for an EIS,” MIS Quarterly, vol. 17(3), pp. 255-269, 1993.
[68] J. Wang and J. Han, “BIDE: efficient mining of frequent closed sequences,” In Proc. 2004 Int. Conf. on Data Engineering (ICDE'04), Boston, MA, March 2004.
[69] W. P. Yan and P. Larson, “Eager aggregation and lazy aggregation,” In Proc. 21st Int. Conf. Very Large Data bases, pp.345-357, Zurich, Sept. 1995.
[70] J. Yang, W. Wang, and P. S. Yu, “Mining asynchronous periodic patterns in time series data,” In Proc. of the ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 275-279, 2000.
[71] J. S. Yue, E. Tsang, D. Yenng, and S. Daming, “Mining fuzzy association rules with weighted items,” In Proc. IEEE Int. Conf. Systems, Man, Cybernetics, Nashville, TN, pp. 1906-1911, 2000.
[72] X. Yan, J. Han, R. Afshar, “CloSpan: mining closed sequential patterns in large databases,” In SIAM Int. Conf. on Data Mining, San Francisco, CA, USA, 2003.
[73] C. C. Yu, and Y. L. Chen, “Mining sequential patterns from multi-dimensional sequence data,” IEEE Transaction on Knowledge and Data Engineering, vol. 17(1), pp. 136-140, 2005.
[74] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-353, 1965.
[75] W. Zhang, “Mining fuzzy quantitative association rules,” In Proc. 11th Int. Conf. Tools Artificial Intelligence, Chicago, IL, pp. 99-102, 1999.
[76] M. Zaki, “SPADE: An efficient algorithm for mining frequent sequences,” Machine Learning, vol. 40 pp. 31-60, 2001.
[77] M. Zhang, B. Kao, DW-L. Cheung, and CL Yip, “Efficient algorithms for incremental update of frequent sequences,” In Proc. Pacific-Asia Conf. Knowledge Discovery Data Mining, pp. 186-197, 2002.
[78] Q. Zheng, K. Xu and S. Ma, “When to update the sequential patterns of stream data?,” In Proc. 7th Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD), Korea, LNAI 2637, pp. 545-550, 2003.
[79] Q. Zhao and S. S. Bhowmick, “Sequential pattern mining: a survey,” Technical Report, CAIS, Nanyang Technological University, Singapore, No. 2003118, 2003. |