參考文獻 |
中文參考文獻
[林景仁 2004] 林景仁 “一種以系統呼叫異常為判斷基礎之入侵防禦系統” ,中央大學資訊管理系,碩士論文,2004
[官炳宏 2005] 官炳宏 “結合隱藏式馬可夫模型與彩色派翠網以關聯多步驟攻擊警訊之方法”,中央大學資訊管理系,碩士論文,2005
[王子彥 2005] 王子彥 ”基於資料探勘技術之監視型間諜程式偵測系統” ,台灣科技大學資訊工程系,碩士論文,2005
[賴申洲 2005] 賴申洲 ”運用混合式分析方法於辨識新型攻擊” 中原大學資訊工程系,碩士論文,2005
英文參考文獻
[ACGSZ2005] S. Andersson, A. Clark, G. Mohay, B. Schatz, J. Zimmermann ,”A Framework for Detecting Network-based Code Injection Attacks Targeting Windows and UNIX” ,21st Annual Computer Security Applications Conference 2005
[BGM2004] R.Battistoni, E. Gabrielli, and L. V. Mancini. A host intrusion prevention system for Windows operating systems. In ESORICS’04, 2004.
[BKJK2005] T.M. Bae, C.S. Kim, S.H. Jin, S.H. Kim, K.H. Ro, Y.M. “Semantic Event Detection in Structured Video Using Hybrid HMM/SVM”. Image and Video Retrieval Springer-Verlag ,2005
[BUR1998] C. J. C. Burges “A tutorial on support vector machines for pattern recognition,”Data Mining and Knowledge Discovery, vol. 2, no. 2, 1998
[CHO2002] S.-B. Cho, “Incorporating soft computing techniques into a probabilistic intrusion detection system,” IEEE Trans. On Systems, Man and Cybernetics-Part C:Applications and Reviews, vol. 32, no. 2, pp. 154-160, May 2002.
[CHS2005] W.H. Chen, S.H. Hsu , H.P. Shen, Application of SVM and ANN for intrusion detection, Computers Operations Research, Volume 32, Issue 10, pp. 2617-2634, 2005.
[CH2003] S. Cho, S. Han, "Two Sophisticated Techniques to Improve HMM-Based Intrusion Detection Systems", Proceedings of International Symposium on Recent Advances in Intrusion Detection, 2003
[CP2003] S.B.Cho, H.J. Park, “Efficient anomaly detection by modeling privilege flows using hidden Markov model”, Computers and Security, 2003
[FHSL1996] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff. A sense of self for unix processes. In Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages 120-128. IEEE, May 1996.
[HC2003] S.-J. Han and S.-B. Cho, "Combining multiple host-based detectors using decision tree," Lecture Notes in Computer Science 2903, Springer, Berlin, 2003.
[HC2006] S.J. Han and S.B. Cho, "Evolutionary neural network for anomaly detection based on program's behavior," IEEE Transactions on Systems, Man and Cybernetics-Part B, 559-570, 2006
[HCL2003] C. W. Hsu, C. C. Chang , C. J. Lin, 2003, A practical guide to support vector classification. Available: http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
[HFS1998] S. A. Hofmeyr, S. Forrest, and A. Somayaji. , “Intrusion detection using sequences of system calls”, Journal of Computer Security, Volume 6, pages 151-180, 1998.
[HHB2003] X.D. Hoang, J. Hu, P. Bertok, “A Multi-layer Model for Anomaly Intrusion Detection ”IEEE International Conference on Networks (ICON), 1, 531-536, September 2003
[HH2004] X.A Hoang, J. Hu,” An efficient hidden Markov model training scheme for anomaly intrusion detection of server applications based on system calls”, Proceedings. 12th IEEE International Conference on ICON, Nov. 2004
[JH1998] T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In Advances in Neural Information Processing Systems 11, 1998
[JXX2005] W. Jiang, Y. Xu ,Y. Xu “A Novel Intrusions Detection Method Based on HMM Embedded Neural Network” In Advances in Natural Computation: First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005
[KC2005] H.S. Kim, S.D. Cha “Empirical evaluation of SVM-based masquerade detection using UNIX commands” Computers & Security, Volume 24, 2005
[KNOP2005] D.S Kim, H.N.Nguyen, S.Y. Ohn, J. S. Park “Fusions of GA and SVM for Anomaly Detection in Intrusion Detection System” Second International Symposium on Neural Networks, 2005
[LS1998] W. Lee and S. J. Stolfo. Data mining approaches for intrusion detection. In Proceedings of the 7th USENIX Security Symposium, 1998.
[LV2002] Y Liao , V.R. Vemuri . Use of K-nearest neighbor classifier for intrusion detection. Computers Security 2002
[LSSP2005] J. Long, D. G. Schwartz, S. Stoecklin, M. Patel, “Application of Loop Reduction to Learning Program Behaviors for Anomaly Detection”, IEEE International Conference on Information Technology ,ITCC 2005.
[LBH2005] G Florez-Larrahondo, S Bridges, EA Hansen, “Incremental Estimation of Discrete Hidden Markov Models Based on a New Backward Procedure”, 20th National Conference on Artificial Intelligence,2005
[MS2005] D.J. Malan and M. D. Smith , “Host-Based Detection of Worms through Peer-to-Peer Cooperation” ,ACM Workshop on Rapid Malcode. Fairfax, Virginia. November 2005
[NEB2000] G. Nebbet.“Windows NT/2000 native API reference”, 2000
[PC2002] H. J. Park and S. B. Cho, “Privilege flows modeling for effective intrusion detection based on HMM”, Department of Computer Science, Yonsei University, Korea, 2002.
[QXBG2002] Y. Qiao, X. W. Xin , Y.Bin and S.Ge:“Anomaly intrusion detection method based on HMM”, Electronics Letters, 20th, 2002
[RAB1989] Lawrence R. Rabiner, Fellow, IEEE, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition”, In Proceedings of the IEEE, Vol. 77, No. 2, February 1989.
[RDY2003] X Rao, C.X. Dong, S.Q. Yang. “An intrusion detection system based on support vector machine.” Journal of Software, 2003.
[RIE2006] C. Ries “ROOTKIT IN WINDOWS” VigilantMinds Inc, 2006
[RJ1986] L. R. Rabiner, B. H. Juang, “An Introduction to Hidden Markov Models”,IEEE ASSP Magazine, January 1986.
[SAEH2004] S. Stolfo, F Apap, E. Eskin, K. Heller, S. Hershkop, A. Honig, and K. Svore. “Detecting Malicious Software by Monitoring Anomalous Windows Registry Accesses” CU Tech Report Feb. 23, 2004.
[SBS2003] B. Schlkopf, C. J. C. Burges & A. J. Smola, 1999, “Introduction to support vector learning, advances in kernel methods-support vector learning,” Cambridge, 1999
[TM2003] K. Tan and R. Maxion. Determining the operational limits of an anomaly based intrusion detector. IEEE Journal on selected areas in communications, 21(1):96-110, Jan. 2003.
[WDD2000] A. Wespi, M. Dacier, H. Debar, "Intrusion Detection Using Variable-Length Audit Trail Patterns", Proceedings of International Symposium on Recent Advances in Intrusion Detection, 2000
[WFP1999] C. Warrender, S. Forrest, B. Pearlmutter, “Detecting intrusions using system calls: alternative data models”, In Proceedings of the 1999 IEEE Symposium on Security and Privacy, pages 133-152, Oakland, California,1999.
[WGZ2004] W. Wang, X.H. Guan, X.L. Zhang, “Modeling Program Behaviors by Hidden Markov Models for Intrusion Detection”, In Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Aug. 2004
[XCY2004] M. Xu, C. Chen, J. Ying, “Anomaly detection based on system call classification”, Journal of Software, 2004
[YD2003] D.Y. Yeung, Y. Ding, “Host-based Intrusion Detection using Dynamic and Static Behavioral Models” Pattern Recognition . 2003.
[YLCEX2001] N Ye, XY Li, Q Chen, SM Emran, M Xu, “Probabilistic techniques for intrusion detection based on computer audit data”, IEEE Trans on Systems, 2001.
[YSZLW2003] Q.B. Yin, L.R. Shen, R.B. Zhang, X.Y. Li, H.Q. Wang , “Intrusion detection based on hidden Markov model”, In Proceedings of 2003 International Conference on Machine Learning and Cybernetics, Nov. 2003
[ZFZ2003] X.Q. Zhang, P.Z. Fan, Z.L. Zhu. “A new anomaly detection method based on hierarchical HMM”. PDCAT2003,China, (2003), 249-252
相關網站
[CL 2001] C.C. Chang and C.J. Lin, LIBSVM : a library for support vector machines, 2001. Software at http ://www.csie.ntu.edu.tw/ ~cjlin/Libsvm
[FSEC] F-secure weblog http://www.f-secure.com/weblog/
[GMSS] Global Market Share Statistics Website http://marketshare.hitslink.com/report.aspx?qprid=2
[JAHM] Jahmm Website, a Java implementation of Hidden Markov Model related algorithm, http:// www.run.montefiore.ulg.ac.be/ ~francois/software/jahmm/
[MILW] Milworm Website http://www.milworm.com
[META] Metasploit Project Website http://www.metasploit.com/
[STRA] Strace for NT WebSite http://www.bindview.com/Services/RAZOR/Utilities/Windows/ strace_readme.cfm
[SYMA2006] Symantec Website, 賽門鐵克網路安全威脅研究報告2006,
http://www.symantec.com
[UNM] UNM system call datasets http://www.cs.unm.edu/~immsec/systemcalls.htm |