博碩士論文 86343009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:108 、訪客IP:18.118.19.189
姓名 陳學奇(Hsueh-Chi Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鋁電解電容器用鋁箔之研究
(A STUDY ON THE FOIL OF ALUMINUMELECTROLYTIC CAPACITOR)
相關論文
★ 鋁電解電容器用陽極鋁箔電蝕時電化學舉動之研究★ 汽車車體用鋁合金板材、擠型材之研究
★ 汽車車體骨架用6000系鋁合金低溫時效與擠型條件之研究★ 材料製程對汽車車體用鋁合金彎曲加工特性之影響研究
★ 鋁電解電容器用低壓陽極箔鋁箔之研發★ 鋁原箔對鋁電解電容器用高壓陽極鋁箔電解腐蝕舉動之影響研究
★ 電蝕條件對鋁電解電容器用高壓陽極鋁箔電蝕時電化學舉動之影響研究★ 鋁原箔製程參數對低壓鋁電解電容器用陽極鋁箔電解腐蝕舉動影響之研究
★ 微量元素對高壓鋁電解電容器用 陽極鋁箔電解腐蝕舉動影響之研究★ 微量元素對低壓鋁電解電容器用 陽極鋁箔電解腐蝕舉動影響之研究
★ 製程履歷對汽車車體用6022 鋁合金析出舉動之影響研究★ 製程條件對汽車車體用6022鋁合金析出擧動之影響
★ 均質化處理及時效處理條件對航空用鋁合金金屬疲勞舉動之影響★ 鋁電解電容器用高純度鋁箔直流電蝕擧動之模型分析
★ 腐蝕環境對航空用7050鋁合金金屬疲勞擧動之影響★ 低壓鋁電解電容器用鋁箔之電蝕條件最佳化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本論文探討鋁電解電容器用鋁箔,於添加不同含量的微量元素與不同製程後,對靜電容量的影響。內容依序分成陰極箔與高、低壓陽極箔等三大部份。利用穿透式電子顯微鏡( TEM )、掃瞄式電子顯微鏡( SEM )、X–光繞射、感應耦合電漿原子放射光譜儀( ICP-AES )、金相顯微鏡( OM )及電化學分析儀(potentiontats / galvanostats for electrochemical research)等儀器進行微結構、蝕刻組織觀察,並配合電化學的分析,探討電化學舉動、蝕刻條件與靜電容量的關係。
首先針對陰極箔,添加不同含量的微量元素銀,及有無安定化處理製程,其金相組織、微結構、織構所產生的變化,對於化學蝕刻所形成蝕孔的型態、大小及分佈情況等蝕刻組織的探討,進而分析對靜電容量的影響。結果發現銀添加量在0.2 wt % 以下時,會隨著含銀量的增加,有助於鋁箔基地中Al-Fe-Mn及Al-Fe-Mn-Si分散粒子的析出,而提昇表面化學蝕刻的腐蝕能力,導致陰極箔腐蝕表面積的增加,進而提高鋁電解電容器的靜電容量。但當銀含量超過0.2 wt %時,則會造成過度腐蝕產生孔合併現象,致使腐蝕表面積減少,而降低鋁電解電容器的靜電容量。結果並顯示安定化處理,能促進鋁箔再結晶的形成,於化學蝕刻後可有效增加陰極鋁箔表面積,因而有助於提升其靜電容量。
其次,針對高壓陽極箔添加含量不同之微量元素鉛,並施以直流電化學蝕刻製程後,觀察分析所形成蝕刻組織,其蝕孔的型態、大小及分佈等情況,以探討其對靜電容量的影響。結果發現有邊長約1.3 μm正四方型的蝕孔產生,在蝕孔內部表面有高低不平而具規則間隔0.12 μm之波狀皺紋的表面型態。結果並顯示添加微量鉛於高純度鋁箔,能有效地使鋁箔晶粒細化,而增加晶粒的數量。此現象造成了電化學蝕刻時蝕孔數量的增加,腐蝕的表面積因而增加,促使靜電容量也隨著提高。但當鉛含量超過0.3 ppm時,其靜電容量不再增加,反而快速降低。
同時,本研究也探討低壓鋁電解電容器用陽極鋁箔於添加不同銅含量,在交流電蝕後產生之腐蝕組織及靜電容量的影響。結果發現,低壓用鋁原箔經交流電蝕後之組織為海綿狀組織。隨著銅含量增加,其擴面效果及靜電容量均提昇。但是當銅含量添加超過49 ppm後,併孔現象趨於嚴重,且腐蝕界面處會由鋸齒型轉而傾向形成直線型,促使靜電容量有下降之趨勢。以定電流循環極化曲線電化學分析,得知隨著銅含量增加,電蝕量隨之加大重量損失率亦愈高。
摘要(英) Abstract
With the addition of the trace elements and various process treatments, in this paper, the static capacity was investigated for the aluminum electrolytic capacitor of aluminum foils. The contents were divided into three parts-cathode foils, dielectric and high (low) voltage anode foils, accordingly. The microstructure and etching morphology were observed and discussed by the applications of transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray Diffraction, inductively coupled plasma atomic emission spectrometer (ICP-AES), metallurgical microscope, and electrochemical analytic system. Thus, the relationships among electrochemical behaviors, electric etching conditions and static capacity could be comprehended.
Firstly, the trace element of silver content was added for the cathode foils. With or without the stabilizing treatment, the variations for the metallurgical organization and microstructure were detected. After chemical etching, the form, size and distribution of etched holes were investigated so as to assess the variations of the static capacity. It was found that the silver content promoted the precipitations of Al-Fe-Mn and Al-Fe-Mn-Si, as well as enhanced etched surface. Thus, the static capacity effectively magnified. However, after the increment of silver content was up to 0.2%, the etched holes merged together due to over etching. This phenomenon caused the etched surface to lessen so as to reduce the static capacity. Also, the results showed that the stabilizing treatment could enhance re-crystallization for the aluminum foils. Therefore, the etched surface of the cathode foils effectively increased, a fact that increased the static capacity helpfully.
Secondly, after the addition of lead, aluminum foils of high voltage electrolytic capacitors proceeded with D.C. chemical etching. Thus, the form, size, and distribution of etched holes were observed to analyze the influence of the static capacitance. The results showed that the etched tunnels had square cross sections about 1.3μm per side. The inner tunnel sidewalls had a rough corrugated texture with regular ripples with a periodic interval of about 0.12μm. The addition of lead to high purity aluminum foils could effectively increase the number of grains and etched holes, which enhanced the etching of the surface as well as the static capacitance. However, the experiments showed that as the incremental addition of lead reached over 0.3ppm, the static capacitance reduced rapidly.
Also, in this study, different content of copper was added for the low-voltage anode foils of aluminum electrolytic capacitor. With A. C. chemical etching, the etched morphology and the influence of the static capacity were investigated. The results showed that the morphology of the low-voltage anode aluminum foils was spongy. As the content of copper increased, the expansive effect of the etched surface and the static capacity promoted. However, as the content of the copper was added over 49ppm, the phenomenon that the etched holes seriously merged together happened. Furthermore, the saw-tooth type of the etched surface boundary was inclined to be transferred to the line type, a fact that the static capacity reduced. By the electric chemical analysis of the polarised curve at fixed electric current circulation, the results showed that the more content of copper increased, the more serious extent of etching as well as the higher rate of the weight loss was obtained.
關鍵字(中) ★ 電容器
★ 鋁箔
★ 陰極箔
★ 陽極箔
★ 電化學腐蝕
★ 隧道式蝕孔
關鍵字(英) ★ capacitance
★ aluminum foils
★ cathode foils
★ anode foils
★ electric etching
★ tunnel
論文目次 目 錄
頁數
中文摘要 ------------------------------------------------------------------ I
英文摘要 ----------------------------------------------------------------- III
謝誌 ---------------------------------------------------------------------- V
目錄 ------------------------------------------------------------------------ VI
圖表目錄 ----------------------------------------------------------------- X
第一章 緒論 ------------------------------------------------------------ 1
第二章 理論基礎與文獻回顧 --------------------------------------- 6
2.1電容器的基本構造與原理 ---------------------------------- 7
2.2靜電容量之提升方式 ---------------------------------------- 14
2.2.1直流電蝕之溶解機構與原理 ------------------------- 15
2.2.2交流電蝕的機構與原理 ------------------------------- 16
2.3鋁原箔性質對電蝕工程之影響 ---------------------------- 21
2.3.1微量元素 ------------------------------------------------- 21
2.3.2織構 ------------------------------------------------------- 23
2.3.3差排密度 ------------------------------------------------- 24
2.4 電蝕工藝流程 ------------------------------------------------ 31
2.4.1 電蝕前處理之影響 ------------------------------------ 31
2.4.2 電蝕溶液之影響 --------------------------------------- 31
2.4.2(a) 氯離子在電蝕過程中之影響 ----------------- 32
2.4.2(b) 硫酸根離子在電蝕過程中之影響 ----------- 33
2.4.2(c) 電蝕溶液之濃度控制 -------------------------- 35
2.4.2(d) 電蝕溶液之溫度控制 -------------------------- 36
2.4.3 洗淨、後處理及乾燥之影響 -------------------------- 37
2.5 化成處理之機構與原理 ------------------------------------ 41
第三章 實驗方法及設備 --------------------------------------------- 47
3.1 陰極鋁原箔之製作 ------------------------------------------ 47
3.2 鋁原箔之金相觀察 ------------------------------------------ 47
3.3 掃瞄式電子顯微鏡(SEM)觀察 ---------------------------- 47
3.4 穿透式電子顯微鏡(TEM)觀察 ---------------------------- 48
3.5 蝕刻處理 ------------------------------------------------------ 48
3.5.1化學蝕刻處理 ------------------------------------------- 48
3.5.2直流電化學蝕刻處理 ---------------------------------- 48
3.5.3交流電化學蝕刻處理 ---------------------------------- 49
3.6 化成處理 ------------------------------------------------------ 52
3.6.1高壓化成處理 ------------------------------------------- 52
3.6.2低壓化成處理 ------------------------------------------- 53
3.7靜電容量之量測 ---------------------------------------------- 56
3.8電化學分析 ---------------------------------------------------- 58
3.9皮膜複製法 ---------------------------------------------------- 60
第四章 微量銀對鋁電解電容器用陰極箔3003化學腐蝕舉動
影響之研究 --------------------------------------------------- 62
4.1 摘要 ------------------------------------------------------------ 62
4.2 前言 ------------------------------------------------------------ 63
4.3 實驗步驟 ----------------------------------------------------- 65
4.4 結果與討論 --------------------------------------------------- 68
4.4.1 陰極鋁原箔腐蝕後靜電容量之比較 -------------- 68
4.4.2 陰極鋁原箔微結構組織之觀察分析 -------------- 70
4.4.3陰極鋁原箔腐蝕組織之觀察分析 ------------------ 73
第五章 微量鉛對鋁電解電容器高壓用陽極箔直流電解腐蝕舉
動影響之研究 ----------------------------------------------- 81
5.1 摘要 ------------------------------------------------------------ 81
5.2 前言 ------------------------------------------------------------ 82
5.3 實驗步驟 ------------------------------------------------------ 84
5.4 結果與討論 --------------------------------------------------- 87
5.4.1高壓用陽極鋁原箔直流電蝕後靜電容量之比較-- 87
5.4.2高壓用陽極鋁原箔微結構組織之觀察分析 ------- 89
5.4.3高壓用陽極鋁原箔腐蝕組織之觀察分析 --------- 95
第六章 微量銅對鋁電解電容器低壓用陽極箔交流電解腐蝕舉
動影響之研究 ------------------------------------------------ 107
6.1 摘要 ------------------------------------------------------------ 107
6.2 前言 ------------------------------------------------------------ 108
6.3 實驗步驟 ------------------------------------------------------ 110
6.4 結果與討論 --------------------------------------------------- 113
6.4.1低壓用陽極鋁原箔交流電蝕後靜電容量之比較-- 113
6.4.2低壓用陽極鋁原箔腐蝕組織之觀察分析 -------- 115
6.4.3 不同銅含量之鋁原箔孔洞增殖時之電化學舉動
分析 ---------------------------------------------------- 121
第七章 結論 ----------------------------------------------------------- 127
參考文獻 ------------------------------------------------------------------ 129
附錄:近五年內著作 -------------------------------------------------- 137
圖 表 目 錄
頁數
表2-1. 表面積擴大率現狀與理論值之比較。 --------------------- 18
表2-2. 高純度鋁箔的JIS H 4170規格。 --------------------------- 25
表2-3. 再結晶集合組織與鋁箔純度的影響。 --------------------- 25
表4-1. 試片(a)~(f)之化學組成(%)及熱處理特性表。 -------- 65
表5-1. 試片(a)~(d)之化學組成(ppm)及立方織構佔有率(%)。- 84
表6-1. 試片(a)~(d)之主要微量元素種類與含量(ppm) 。 --- 110
圖1-1. 鋁電解電容器之製造流程圖。 ----------------------------- 5
圖2-1. 平行板電容器:(a)帶電量示意圖。(b)電場分佈示意圖- 11
圖2-2. 電容器之基本構造。 ----------------------------------------- 11
圖2-3. 有極性鋁電解電容器之基本構造。 ----------------------- 12
圖2-4. 平行板電容器:(a)真空中電力線分佈。(b)介電層之感
應電荷。 -------------------------------------------------------- 12
圖2-5. 陽極鋁箔及陰極鋁箔之界面放大圖。 -------------------- 13
圖2-6. 鋁電解電容器之等效迴路示意圖。 ----------------------- 13
圖2-7. 溶解量與表面積增大之關係圖。 ------------------------- 18
圖2-8. 交流電蝕下的立方蝕孔增殖機構。 ---------------------- 19
圖2-9. 交流電蝕下的立方蝕孔增殖機構。 ---------------------- 20
圖2-10. (a)陽極和陰極皮膜(anodic/etch films)覆蓋於立方孔蝕
(cubic pits) 表面之示意圖.(b)鋁的陽極皮膜和陰極皮
膜的橫截面穿透式電子顯微鏡(TEM)照片。 ---------- 20
圖2-11.海水中伽凡尼系列的活化行為。 --------------------------- 26
圖2-12. 鋁電解電容器陰極箔局部電池效應:(a)鋁中之金屬雜
質在溶液中構成電池現象。(b)鋁與他種金屬在溶液
中接觸構成電池現象。 -------------------------------------- 27
圖2-13. 鐵含量對化成時間與漏電流的影響。 ------------------- 27
圖2-14. 鐵含量對靜電容量之影響。 ------------------------------- 28
圖2-15. 矽含量對靜電容量的影響。 -------------------------------- 28
圖2-16. 銅含量對靜電容量的影響。 ------------------------------- 29
圖2-17. 高、低壓用電蝕鋁箔的腐蝕組織:(a)高壓用陽極箔
的隧道式腐蝕皮膜複製。(b)低壓用電蝕鋁箔截面之
海綿狀腐蝕。 ------------------------------------------------- 29
圖2-18. (100)面與非(100)面所呈現不同腐蝕的形態。 ---------- 30
圖2-19. (100)面的多寡對腐蝕形態的影響。 ---------------------- 30
圖2-20. 鋁原箔於電化學蝕刻,添加硫酸根離子電蝕示意圖。-- 37
圖2-21. 鋁原箔於鹽酸電蝕液中添加硫酸與否之電蝕型態模型。 38
圖2-22. 不同硫酸濃度下電蝕對tunnel極限長度之影響。------- 39
圖2-23. 不同硫酸濃度下tunnel長度對電蝕時間之關係曲線。-- 39
圖2-24. 不同硫酸濃度之電蝕液對電蝕孔分佈之影響。--------- 40
圖2-25. 有無添加硫酸電蝕之tunnel密度對電蝕時間曲線圖。-- 40
圖2-26. 電蝕液溫度與pit成長速度的關係。 --------------------- 41
圖2-27. 鋁箔經電蝕處理及化成處理後的表面形態。 --------- 44
圖2-28. 氫氧化膜之剖面模型圖。 ---------------------------------- 44
圖2-29. 熱處理後再化之低壓化成膜模型圖。 ------------------- 45
圖2-30. 鋁箔於化成其皮膜之剖面模型圖。 --------------------- 45
圖2-31. 化成電壓與靜電容量之關係曲線圖。 -------------------- 46
圖3-1. 直流電蝕設備示意圖。 ------------------------------------- 50
圖3-2. 試片電蝕面積。 ---------------------------------------------- 51
圖3-3. 交流電蝕設備示意圖。 ------------------------------------- 51
圖3-4. 化成及靜電容量量測之試片規格。 ---------------------- 54
圖3-5. 化成處理設備示意圖。 ------------------------------------- 54
圖3-6. 高壓(540Vfe)化成處理流程圖。 -------------------------- 55
圖3-7. 低壓(20Vfe)化成處理流程圖。 ---------------------------- 55
圖3-8. 靜電容量量測示意圖。 ------------------------------------- 57
圖3-9. 電化學分析裝置圖。 ---------------------------------------- 59
圖3-10. 皮膜複製試片之製作流程圖。 ---------------------------- 61
圖4-1. 實驗流程圖。 ------------------------------------------------- 67
圖4-2. 銀含量暨有無安定化處理對靜電容量之關係曲線圖。 68
圖4-3. 試片(a)~(f)經冷輥軋加工後之TEM微結構組織圖。-- 72
圖4-4. 試片(a)~(f)經化學腐蝕後之SEM表面腐蝕組織圖。-- 77
圖4-5. 試片(d)之SEM表面腐蝕組織暨第二相粒子X-Ray
光譜分析。 ---------------------------------------------------- 78
圖4-6. 有安定化處理與無安定化處理試片之截面及表面腐
蝕組織圖。 --------------------------------------------------- 79
圖4-7. 有無安定化處理之試片晶格排列狀態與腐蝕孔洞型
態示意圖。 --------------------------------------------------- 80
圖5-1. 實驗流程圖。 ------------------------------------------------- 86
圖5-2. 鉛含量對靜電容量、重量損失率及(100)[001]立方
織構佔有率之關係曲線圖。 ------------------------------- 87
圖5-3. 不同鉛含量試片(a)~(d)經最終完全退火後之OM晶
粒金相圖。 -------------------------------------------------- 92
圖5-4. 不同鉛含量試片(a)~(c)經最終完全退火後之TEM晶
粒金相及其擇區繞射圖。 -------------------------------- 94
圖5-5. 不同鉛含量試片(a)~(d)經直流電蝕後之低倍率OM
截面腐蝕組織圖。 ------------------------------------------ 99
圖5-6. 不同鉛含量試片(a)~(d)經直流電蝕後之高倍率OM
截面腐蝕組織圖。 --------------------------------------- 100
圖5-7. 不同鉛含量試片(a)~(d)經直流電蝕後之低倍率SEM
表面腐蝕組織圖。 ----------------------------------------- 101
圖5-8. 不同鉛含量試片(a)~(d)經直流電蝕後之高倍率SEM
表面腐蝕組織圖。 ----------------------------------------- 102
圖5-9. 不同鉛含量試片(a)~(d)經直流電蝕後之高倍率之
SEM皮膜複製tunnel組織圖。--------------------------- 103
圖5-10. 不同鉛含量試片(b)、(c)經直流電蝕後之晶界處
SEM表面腐蝕組織圖。 ------------------------------------ 104
圖5-11. 不同鉛含量試片(a)~(c)對應圖5-4.之晶界處SEM
表面腐蝕組織圖。 ----------------------------------------- 105
圖5-12. 鉛含量0.3ppm試片(b)之tunnel蝕孔型態圖。 ------ 106
圖6-1. 實驗流程圖。 ------------------------------------------------ 112
圖6-2. 銅含量對靜電容量、重量損失率之關係曲線圖。 ------ 113
圖6-3.試片(a)~(d)經孔洞增殖後之低倍率OM截面腐蝕組織圖。--117
圖6-4.試片(a)~(d)經孔洞增殖後之高倍率OM截面腐蝕組織圖。--118
圖6-5.試片(a)~(d)經孔洞增殖後之低倍率SEM表面腐蝕組織圖-119
圖6-6.試片(a)~(d)經孔洞增殖後之高倍率SEM表面腐蝕組織圖-120
圖6-7.試片(a)~(d)在交流電蝕時之循環極化曲線圖。 ------ 124
圖6-8.正弦波交流電蝕時陽極半週期下電量使用狀況分析圖。-- 125
圖6-9.試片(a)~(d)在交流電蝕之電化學舉動中,崩潰電位Eb
及其對應電流iτ曲線圖。 ----------------------------------- 126
參考文獻 參 考 文 獻
1. 山口謙四郎, "電解電容器用高純度鋁箔", J. Jpn. Inst. Light Met., vol. 35, No. 11, pp. 365-371, (1985).
2. 小島浩一, 表面技術., ARS. 第12回, pp. 6-15, (1996).
3. 永田伊佐也;電解蓄電器評論, No. 2, pp. 31, (1977).
4. 永田伊佐也著, 陳永濱譯, "鋁箔乾式電解電容器", 日本蓄電器工業株式會社 pp. 184-190, (1985).
5. 永田伊佐也著, 陳永濱譯, "鋁箔乾式電解電容器", 日本蓄電器工業株式會社 pp. 183, (1985).
6. R.S. Alwitt, H. Uchi, T.R Beck and R.C. Alkire, "Electrochemical Tunnel Etching of Aluminum", J. Electrochem. Soc.:Electrochemical Science and Technology, vol. 131, No. 1, pp. 13-17, (1984).
7. K. Hebert and R. Alkire, "Growth and Passivation of Aluminum Etch Tunnels", J. Electrochem. Soc., Electrochemical Science and Technology, vol. 135, No. 9, pp. 2146-2157, (1988).
8. C. K. Dyer and R. S. Alwitt, "Surface Changes During A.C. Etching of Aluminum", J. Electrochem. Soc.:Electrochemical Science and Technology, vol. 128, No. 2, pp. 300-305, (1981).
9. J. H. Jeong, S. S. Kim, H. G. Kim, C. H. Chio, and D. N. Lee, " Electrochemical A C Etching of Aluminum Foils in Hydrochloric Acid Electrolytes", J. Materials Science Form., vol. 217-222, pp. 1565-1570, (1996).
10. E. Suganuma, Y. Tanno, T. Ito, A. Funakoshi, and K. Matsuki, "Surface Films Formed on Aluminum during AC Etching in Hydrochloric Acid Solution", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 41, No. 10, pp. 1049-1053, (1990).
11. H.P. Hack, Metals Handbook, Vol.13, Corrosion 9th ed., ASM, Metals Park, OH, pp. 234, (1987).
12. 川島 浪夫, 中村 雄造, 西坂 基, J. Jpn. Inst. Light Met., vol. 21, pp. 54, (1956).
13. 日本輕金屬學會四十周年出版, "高純度アルミニウム", アルミ ニウムの組織と性質, pp. 159-170, (1991).
14. 川島 浪夫, 中村 雄造, 西坂 基, J. Jpn. Inst. Light Met., vol. 5, pp.121, (1952).
15. T. Suzuki, k. Arai, M. Shiga, and Y. Nakamura, Metall., "Impurity Effect on Cube Texture in Pure Aluminum Foils", Metall. Trans. A, vol. 16A, pp. 27-36, (1985).
16. K. Fukuoka and M. Kurahashi, "Effect of Si-Precipitate on the Capacitance of AC-Etching Al- Electrolytic Capacitor Cathode Foil", Sumitomo Light Metal Technical Reports, vol. 31, No. 4, pp. 10-17, (1990).
17. L. V. Alphen, P. Nauwen, and J. Slakhorts, "The Relation Between the Composition the Structure Parameters and the Etchability of Alloyed Al-Cathode Foils for Electrolytic Capacitors", Z. Metallkde, Bd 70, H3, pp. 158-167, (1979).
18. P. Laevers, H. Terryn, J. Vereecken, B. Kernig and B. Grzemba, "The Influence of Manganese on The AC Electrolytic Graining of Aluminum", Corrosion Sci., vol. 38, No. 3, pp. 413-429, (1996).
19. K. Arai and T. Suzuki and T. Atsumi, "Effect of Trace Elements on Etching of Aluminum Electrolytic Capacitor Foil", J. Electrochem. Soc.:Solid State Science and Technology, vol. 132, No. 7, pp. 1667-1670, (1985).
20. T. Suzuki, k. Arai, M. Shiga, and Y. Nakamura, "Impurity Effect on Cube Texture in Pure Aluminum Foils", Metall. Trans. A, vol. 16A, pp. 27-36, (1985).
21. Bakish, R., E. Z. Borders and R. Kornhaas, "On the Fundamentals of Etching High-Purity Aluminum Foil for Capacitor Use", J. Electrochem. Soc., vol. 109, pp. 791-795, (1995).
22. C. S. Lin, C. C. Chang and S. H. Hsieh, "Pit Growth of 1050 Aluminum Plates Electrograined in A Nitric Acid", J. Electrochem. Soc., vol. 147, No. 10, pp. 3647-3653, (1999).
23. 福岡 潔, 倉橋正晴, "高純度アルミニウム箔のトンルエッチンダ及にす微量インジウムの影響", Sumitomo Light Metal Technical Reports, vol. 34, No. 4, pp. 205-210, (1993).
24. E. Suganuma, Y. Tanno, I. Umetsu, A. Funakoshi, and K. Matsuki, "Factors Affecting the Formation of a Porous Layer during AC Etching of Aluminum in HCl Solution", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 42, No. 9, pp. 928-932, (1991).
25. K. Fukuoka and M. Kurahashi, "Effect of Indium on the Etching Phenomena for High Purity Aluminum Foil", Sumitomo Light Metal Technical Reports, vol. 34, pp. 205-212, (1993).
26. Kenshiro YAMAGUCHI*, "High Purity Aluminum Foil for Electrolytic Capacitor", J. Jpn. Inst. Light Met., vol. 35, No. 11, pp. 365-371, (1985).
27. Bakish, R., E. Z. Borders and R. Kornhaas, "On the Fundamentals of Etching High-Purity Aluminum Foil for Capacitor Use", J. Electrochem. Soc., vol. 109, pp. 791-795, (1995).
28. J. C. Cuyas, J. D. Culcasi and C. L. Liorente, "Inhomogeneity of Rolling and Annealing Texture in Aluminum", light metal june, pp. 12-14, (1988).
29. W. Lin, G. C. Tu, C. F. Lin and Y. M. Peng, "The Effect of Lead Impurity on the DC-Etching Behavior of Aluminum Foil for Electrolytic Capacitor Usage", Corrosion Sci., vol. 38, pp. 889-907, (1996).
30. E. Makino, T. Yajima, T. shibata, Y. Tanno and E. Suganuma, "In situ Observation of Growing pits during Tunnel Etching of Aluminum", Mater. Trans. JIM., vol. 34, No. 9, pp. 796-800, (1993).
31. 福井 康司, 清水 遵, 牧本 昭一;J. Jpn. Inst. Light Met., vol. 40, No. 9, pp. 712-724, (1990).
32. N. Kanzaki, "Current Situation and Issues of Surface Treatment for Aluminum Electrolytic Capacitor", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, Vol.48, No.10, pp.976-981, 1997.
33. T. Furu and E. Nes, "Growth Rates of Recrystallized Grains in Highly Deformed Commercial Purity Aluminum, an Experimental and Modeling Study", Mater. Sci. Forum, vol. 113, pp. 311-316, (1993).
34. 日本輕金屬學會四十周年出版, "高純度アルミニウム", アルミニウムの組織と性質, pp. 159-170, (1991).
35. Izaya Nagata, "Aluminum Foils for Electrolytic Capacitors from the Stand point of Capacitor Manufacturers", J. Jpn. Inst. Light Met., vol. 38, No. 9, pp. 552-557, (1988).
36. B. Major, "Texture, Microstructure, and Stored Energy Inhomogeneity in Cold Rolled Commercial Purity Aluminum and Copper", Materials Science and technology, vol. 8, pp. 510-515, june, (1992).
37. K. Brown and J. Inst, Met., vol. 100, pp. 341-345, (1972).
38. D. J. Lloyd and M. Ryvola, Microstr. Sci., vol. 12, pp. 577-585, (1984).
39. H. Hero and J. A. Mikkelsen, J. Inst. Met., vol. 97, pp. 18-22, (1969).
40. N. Hansen, Trans. AIME, vol. 245, pp. 2061-2068, (1969).
41. F. Schuh and M. Von Heimendahl, Z. Metallk., vol. 65, pp 346-352, (1974).
42. 特許公報; 昭51-34108, 昭38-21872;公開特許公報; 昭52-120364, 昭53-16857.
43. 柯賢文﹔腐蝕極其防制,1st ed,全華科技圖書股份有限公司, chap 7, (1995).
44. F. D. Bogar and R. T. Foley, "The Influence of Chloride Ion on Pitting of Aluminum", J. Electrochem. Soc., April, pp. 462-464, (1972).
45. Y. Tak, E. R. Henderson and K. R. Hebert, "Evolution of Microscopic Surface Topography during Passivation of Aluminum", J. Electrochem. Soc., vol. 141, No. 6, pp. 1446-1452, (1997).
46. T. C. Tan and D. T. Chin, "Effect of Alterating Voltage on the Pitting of Aluminum in Nitrate, Sulfate, and Chloride Solutions", Corrosion, vol. 45, No. 12, pp. 984-989, (1989).
47. K. Matsuki, K. Tachibana, M. Sugawara, A. Funakoshi, and E. Suganuma, "Study on AC Etching of Aluminum in Hydrochloric Acid Solution by Cyclic Chronotentiometry", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 39, No. 12, pp. 34-40, (1988).
48. K. Matsuki, K. Tachibana, A. Funakoshi, and E. Suganuma, "Polarization Behavior of Aluminum in Hydrochloric Acid During AC Etching", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 38, No. 6, pp. 38-42, (1987).
49. E. Suganuma, Yutan, T. Ito, A. Funakoshi, and K. Matsuki, "Surface Films Formed on Aluminum during AC Etching in Hydrochloric Acid Solution", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 41, No. 10, pp. 1049-1053, (1990).
50. J. Flis and L. Kow Alczyk, "Effect of Sulphate Anions on Tunnel Etching of Aluminum", Journal of Applied Electrochemistry, vol. 25, pp. 501-507, (1995).
51. A. Hibino, M. Tamaki, Y. Watanabe and T. Oki, "The Effect Sulfuric Acid on Tunnel Etching of Aluminum in Hydrochloric Acid", Light Metal, vol. 42, pp. 440-445, (1992).
52. H. Zhong and T. Oki, "The Effect of Hydrochloric Acid Concentration and Solution Temperature on the Characteristics of Al Foil during AC Etching under Potential Control", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 46, pp. 270-275, (1995).
53. 永田伊佐也著, 陳永濱譯, "鋁箔乾式電解電容器", 日本蓄電器工業株式會社 pp. 230-233, 1985.
54. 永田伊佐也著, 陳永濱譯, "鋁箔乾式電解電容器", 日本蓄電器工業株式會社 pp. 171-175, (1985).
55. C. F. Lin, and K. R. Hebert, "The Effect of Prior Cathodic Polarization on the Inititation of Pitting on Aluminum", J. Electrochem. Soc., vol. 137, No. 12, pp. 3723-3730, (1990).
56. E. Suganuma, Y. Tanno and A. Funakoshi, "Etching Layer Structure Produced by AC Etching of Aluminum in Hydrochloric Acid Solution", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 51, No. 9, pp. 929-933, (2000).
57. G. E. Thompson and G. C. Wood, "The Effect of Alternating Voltage on Aluminum Electrodes in Hydrochloric Acid", Corrosion Science, vol. 18, pp. 721-746, (1978).
58. H. Zhong ,R. Ichins, M. Okids and T. Oki, "The Effect of Frequency on the Characteristics of Al Foil during AC Etching under Potential Control", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 46, pp. 739-744, (1995).
59. N. Osawa, K. Fukuoka and Z. Tanobe, "The Etching Behavior of Pit Initiation and Tunnel Growth of Aluminum Foil for Electrolytic Capacitors during Early Stage of D.C. Etching", Sumitomo Light Metal Technical Reports, vol. 32, pp. 124-131, (1991).
60. E. Makino, K. Takeda, T. Sato, E. Suganuma, T. Ito and Y. Tanno, "Direct Current Etching of Aluminum in NaCl/NaNo3 Mixed Electrolytes", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 37, No. 13, pp. 763-768, (1986).
61. R. S. Alwitt, T. R. Beck and K. Hebert, "Electrochemical Tunnel Growth in Aluminum", NACE-9 Advances in Localized Corrosion, pp. 145-152, (1987).
62. D. Goad, "Tunnel Morphology in Anodic Etching of Aluminum", J. Electrochem. Soc., vol. 144, No. 6, pp. 1965-1971, june (1997).
63. K. Hebert and R. Alkire, "Growth Rates of Aluminum Etch Tunnels", J. Electrochem. Soc., Electrochemical Science and Technology, vol. 135, No. 10, pp. 2447-2452, (1988).
64. J. H. Jeong, C. H. Chio, and D. N. Lee, "A Model for the〈100〉Crystallographic Tunnel Etching of Aluminum", J. Mater. Sci., vol.31 pp. 5811-5815, (1996).
指導教授 歐炳隆(Bin-Lung Ou) 審核日期 2005-12-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明