博碩士論文 89343009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.144.228.149
姓名 黃國鑫(Kuo-Hsin Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 塗佈減量之研究
(Reduction of Amount of Dye during Spin Coating)
相關論文
★ 化學機械研磨流場模擬實驗研究★ 變轉速之旋轉塗佈實驗研究
★ 微小熱點之主動式冷卻★ 大尺寸晶圓厚膜塗佈
★ 科氏力與預塗薄膜對旋轉塗佈之影響★ 微液滴對微熱點之 冷 卻
★ 大尺寸晶圓之化學機械研磨實驗研究★ 液晶顯示器旋轉塗佈研究
★ 流體黏度對旋塗減量之影響★ 微熱點與微溫度感測器製作
★ 高溫蓄熱器理論模擬★ 熱氣泡式噴墨塗佈
★ 注液模式對旋轉塗佈之影響★ 磁流體旋塗不穩定之研究
★ TFT-LCD狹縫式塗佈研究★ 彩色濾光片噴塗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 基於節省生產成本考量及環保因素考量,CD-R(Compact Disc Recordable)光碟片之感光染料旋轉塗佈製程中,感光染料減量是一個重要之議題,本研究之實驗流場觀測圖顯示,經由與平滑型光碟片基板之旋塗流場圖相互比較後發現,表面具有預製螺紋狀溝槽之光碟片基板會對不穩定手指狀現象及可形成完全覆膜之時間有顯著之影響。旋塗製程中,光碟片基板表面之風剪氣流將會影響注入感光染料之流場分佈,特別是在塗佈較大面積之區域時。因此,於塗佈液注入過程中,在低基板轉速下所得之塗佈效果要比在高基板轉速下來的好。在塗佈基板轉速為300 rpm時,可以獲得完全覆膜之噴嘴移動速率比在塗佈基板轉速為500 rpm條件下較為寬廣。研究結果同時提供出實驗參數包括注液速率、注液量及噴嘴移動速率之具溝槽光碟片基板可完全覆膜關係圖等相關結論,藉由選取適當之注液速率及噴嘴移動速率進行旋塗製程時,將可有效把感光染料使用量減低至0.05 mL。
本研究另針對三種不同之塗佈液注入方式:自由釋放液滴法(Released Drop)、中心注入法(Centered Injection)及螺旋注入法(Spiral Injection),探討此三種不同之塗佈液注入方式於旋轉塗佈製程中對塗佈效率之影響,旋塗用基板為晶圓基板。依據實驗流場觀測圖可得知,塗佈液注入方式對於基板表面液膜的可形成完全覆膜之時間、液膜波前之最大覆膜半徑(Rmax)及最小塗佈液注液量有著顯著之影響。經由與自由釋放液滴法及螺旋注入法之旋塗流場圖相互比較後發現,於塗佈液黏度較低時,利用中心注入法進行旋塗時,因為具有最小臨界半徑Rc之緣故,使得其在基板表面形成完全覆膜之塗佈時間比利用自由釋放液滴法及螺旋注入法在基板表面形成完全覆膜之塗佈時間較為長。在邦得數Bo (Bond Number)約為定值之實驗參數條件下,於旋轉雷諾數較高時,螺旋注入法之無因次液膜波前之最大覆膜半徑的值比自由釋放液滴法及中心注入法之無因次液膜波前之最大覆膜半徑的值較為小,而當於旋轉雷諾數較低時,螺旋注入法之無因次液膜波前之最大覆膜半徑的值則大於自由釋放液滴法及中心注入法兩者之無因次液膜波前之最大覆膜半徑的值。
摘要(英) Reducing the amount of dye used in the spin-coating process for compact disc-recordable (CD-R) is essential for cost reduction and environmental consideration. The results of flow visualization show that, compared with that on a smooth substrate, the patterned roughness on the pregrooved substrate does affect the fingering instability and the amount of time needed for fully coating the substrate. The airshear flow above the disc will affect the injection of dye onto the disc, particularly in an area of larger radius. Therefore, a higher disc rotation speed in the stage of dye injection is not necessarily better than a slower one. The range of nozzle-moving speed V, which can be used for fully coating the substrate, is wider at 300 rpm than that at 500 rpm. The regime maps for injection rate Q, nozzle-moving speed V, and injection volume show that by choosing appropriate Q and V, the amount of dye used was reduced to 0.05 mL.
The study investigates how the method of liquid dispensing, including released drop, centered injection and spiral injection, affects the coating efficiency during spin coating processes. The flow visualization indicates that the method of liquid dispensing has a significant effect on the time needed to fully coat the wafer, the minimum liquid volume required for fully coating, and the maximum attainable radius of liquid front Rmax. Compared with the released drop and the spiral injection, the centered injection takes the longest time to fully coat the wafer mainly due to its very small critical radius Rc. Under a constant Bond number Bo, Rmax for the spiral injection is slightly smaller than those for the released drop and centered injection in the region of high rotational Reynolds number Rew, while the Rmax for the spiral injection becomes the largest in the region of low Rew.
關鍵字(中) ★ 旋轉塗佈
★ 塗佈液減量
★ 可讀寫光碟片
★ 自由釋放液滴法
★ 感光染料減量
★ 螺旋或中心注入法
★ 注液量
★ 注液速率
關鍵字(英) ★ spin coating
★ CD-R
★ released drop
★ spiral or centered injection
★ injection volume
★ injection rate
★ dye reduction
★ liquid reduction
論文目次 摘要.......................................................................................................................I
Abstract .............................................................................................................. III
誌謝..................................................................................................................... V
目錄....................................................................................................................VI
圖目錄................................................................................................................IX
表目錄...............................................................................................................XII
符號說明......................................................................................................... XIII
1. 緒論................................................................................................................. 1
1.1 研究動機................................................................................................ 1
1.2 研究目的................................................................................................ 2
1.3 文獻回顧................................................................................................ 6
1.3.1 光碟片塗佈方法文獻回顧........................................................... 6
1.3.2 塗佈液注入方式文獻回顧......................................................... 13
1.4 論文架構.............................................................................................. 16
2. 實驗設備與方法.......................................................................................... 19
2.1 塗佈液旋轉塗佈系統.......................................................................... 19
2.1.1 光碟片感光染料旋轉塗佈系統................................................ 19
2.1.2 可變注液方式旋轉塗佈系統.................................................... 20
2.2 影像擷取分析系統.............................................................................. 21
2.3 實驗方法.............................................................................................. 22
2.3.1 光碟片感光染料旋轉塗佈方法................................................ 22
2.3.2 塗佈液注入方式旋轉塗佈方法................................................ 24
3. 光碟片之旋塗研究...................................................................................... 33
3.1 感光染料覆膜成型研究...................................................................... 33
3.1.1 平滑型光碟片............................................................................ 33
3.1.2 具有預製螺旋狀溝槽光碟片.................................................... 34
3.2 感光染料覆膜不完全研究.................................................................. 35
3.3 感光染料減量研究............................................................................... 36
3.3.1 注液速率對感光染料用量之影響............................................ 36
3.3.2 噴嘴移動速率對感光染料用量之影響................................... 37
3.4 感光染料可完全覆膜之研究............................................................. 38
3.4.1 平滑型光碟片............................................................................. 38
3.4.2 具有預製螺旋狀溝槽光碟片.................................................... 39
3.5 結論...................................................................................................... 40
4. 晶圓之旋塗研究.......................................................................................... 58
4.1 不同注液方式之覆膜成型研究......................................................... 58
4.1.1 塗佈液黏度5 cP 之覆膜成型研究........................................... 58
4.1.2 塗佈液黏度50 cP 之覆膜成型研究........................................ 60
4.1.3 塗佈液黏度500 cP 之覆膜成型研究...................................... 62
4.2 塗佈液可完全覆膜之使用量研究..................................................... 63
4.2.1 自由釋放液滴法之塗佈液使用量............................................ 64
4.2.2 中心注入法之塗佈液使用量.................................................... 64
4.2.3 螺旋注入法之塗佈液使用量.................................................... 65
4.2.4 最小塗佈液使用量.................................................................... 66
4.3 最大覆膜面積之研究.......................................................................... 66
4.4 結論...................................................................................................... 68
5. 總結論........................................................................................................... 94
未來研究方向.................................................................................................... 96
參考文獻............................................................................................................ 97
作者簡介.......................................................................................................... 103
參考文獻 [1] S. Wolf, Silicon Processing for the VLSI Era, Vol. I, Lattice Press, 1986.
[2] S. Sze, VLSI Technology, McGraw Hill, New York, 1988.
[3] A. Mukherjee, Introduction to NMOS & CMOS VLSI System Design, Prentice-Hall, Englewood Cliffs, 1986.
[4] D. J. Elliot, Integrated Circuit Fabrication Technology, 2nd Ed., Mc Graw-Hill, 1989.
[5] A. G. Emslie, F. T. Bonner, and L. G. Peck, “Flow of a Viscosity Liquid on a Rotating Disk”, Journal of Applied Physics, 29 (1958) 858.
[6] E. Momoniat and D. P. Mason, “Investigation of the Coriolis Force on a Thin Fluid Film on a Rotating Disk”, International Journal of Non-Linear Mechanics, 31 (1998) 1069.
[7] M. Yanagisawa, “Slip Effect for Thin Liquid Film on a Rotating Disk”, Journal of Applied Physics, 61 (1978) 1034.
[8] A. Acrivos, M. Shan, and E. E. Petersen, “On The Flow of a Non-Newtonian Liquid on a Rotating Disk”, Journal of Applied Physics, 31 (1960) 963.
[9] D. E. Bornside, C. W. Maccsko, and L. E. Scriven, “Spin Coating: One-Dimensional Model”, Journal of Applied Physics, 66 (1989) 5185.
[10] D. Meyerhofer, “Characteristics of Resist Films Produced by Spinning”, Journal of Applied Physics, 49 (1978) 3993.
[11] W. W. Flack, D. S. Soong, A. T. Bell, and D. W. Hess, “A Mathematical Model for Spin Coating of Polymer Resist”, Journal of Applied Physics, 56 (1984) 1199.
[12] C. T. Wang and S. C. Yen, “Theoretical Analysis of Film Uniformity in Spinning Processes”, Chemical Engineering Science, 50 (1995) 989.
[13] J. H. Hwang and F. Ma, “On The Flow of a Thin Liquid Film over a Rough Rotating Disk”, Journal of Applied Physics, 66 (1989) 388.
[14] J. H. Hwang and F. Ma, “On The Depletion of a Thin Liquid Film Over a Rough Rotation Disk”, Mechanics Research Communications, 17 (1990) 423.
[15] B. G. Higgins, “Film Flow on a Rotating Disk”, Physics of Fluids, 29 (1986) 3522.
[16] D. P. Birnie, S. K. Hau, D. S. Kamber, and D. M. Kaz, “Effect of Ramping-up Rate on Film Thickness for Spin-on Processing”, Journal of Materials Science: Materials in Electronics, 16 (2005) 715.
[17] T. Yada, T. Maejima, and M. Aoki, “Formation of a Positive Photoresist Thin Film by Spin Coating: Influence of Atmospheric Humidity”, Japanese Journal of Applied Physics, 36 (1997) 7041.
[18] T. Yada,, T. Maejima, M. Aoki, and M. Umesaki, “Thin-Film Formation by Spin Coating: Characteristics of a Positive Photoresist”, Japanese Journal of Applied Physics, 34 (1995) 6279.
[19] T. Yada, M. Aoki, T. Maejima, and A. Ishizu, “Formation of a Positive Photoresist Thin Film by Spin Coating: Influence of Atmospheric Temperature”, Japanese Journal of Applied Physics, 36 (1997) 372.
[20] T. Yada, “Formation of a Negative Photoresist Thin Film by Spin Coating”, Japanese Journal of Applied Physics, 37 (1998) 2752.
[21] C. J. Lawrence, “The Mechanics of Spin Coating of Polymer Films”, Physics of Fluids, 31 (1988) 2786.
[22] R. K. Yonkoski and D. S. Soane, “Model for Spin Coating in Microelectronic Applications”, Journal of Applied Physics, 72 (1992) 725.
[23] J. Gu, M. D. Bullwinkel, and G. A. Campbell, “Spin Coating on Substrate with Topography”, Journal of Electrochemical Society, 142 (1995) 907.
[24] R. U. Madras and T. G. Kaiserslautern, “Spinning of a Liquid Film From a Rotating Disc in The Presence of a Magnetic Field - A Numerical Solution”, Acta Mechanica, 147 (2001) 137.
[25] S. M. Troian, E. Herbolzheimer, S. A. Safran, and J. F. Joanny, “Fingering Instabilities of Driven Spreading Film”, Europhysics Letters, 10 (1989) 25.
[26] L.W. Schwartz, “Viscous Flow Down an Inclined Plane: Instability and Finger Formation”, Physics of Fluids A, 3 (1989) 443.
[27] F. Melo, J. F. Joanny, and S. Fauve, “Fingering Instability of Spinning Drops”, Physics Review Letters, 63 (1989) 1958.
[28] N. Fraysse and G. M. Homsy, “An Experimental Study of Rivulet Instabilities in Centrifugal Spin Coating of Viscous Newtonian and Non-Newtonian Fluids”, Physics of Fluids, 6 (1994) 1491.
[29] M. A. Spaid and G. M. Homsy, “Stability of Viscoelastics Dynamic Contact Lines: An Experiment Study”, Physics of Fluids, 9 (1997) 823.
[30] Y. D. Shikhmurzaev, “Spreading of Drop on Solid Surface in a Quasi-Static Regime”, Physics of Fluids, 9 (1997) 266.
[31] S. K. Wilson, R. Hunt, and B. R. Duffy, “The Rate of Spreading in Spin Coating”, Journal of Fluid Mechanics, 413 (2000) 65.
[32] F. C. Chou, P. Y. Wu, and S. C. Gong, “Analytical Solutions of Film Planarization during Spin Coating”, Japanese Journal of Applied Physics, 37 (1998) 4321.
[33] P. Y. Wu and F. C. Chou, “Complete Analytical Solutions of Film Planarization during Spin Coating”, Journal of Electrochemical Society, 146 (1999) 3819.
[34] M. W. Wang and F. C. Chou, “Fingering Instability and Maximum Radius at High Rotational Bond Number”, Journal of Electrochemical Society, 148 (2001) G283.
[35] S. Middleman, “The Effect of Induced Air-Flow on The Spin Coating of Viscous Liquids”, Journal of Applied Physics, 62 (1987) 2530.
[36] M. Yanagisawa, “Slip Effect for Thin Liquid Film on a Rotating Disk”, Journal of Applied Physics, 61 (1987) 1034.
[37] T. J. Rehg, and B. G. Higgins, “The Effect of Inertia and Interfacial Shear on Film Flow on a Rotating Disk”, Physics of Fluids, 31 (1988) 1360.
[38] W. H. McConnell, “On The Rate of Thinning of Thin Liquid Films on a Rotating Disk”, Journal of Applied Physics, 64 (1988) 2232.
[39] F. Ma and J. H. Hwang, “The Effect of Air Shear on The Flow of a Thin Liquid Film over a Rough Rotating Disk”, Journal of Applied Physics, 68 (1991) 1265.
[40] S. C. Gong and F. C. Chou, “Effect of Wind shear on The Film Thickness Distribution over Rotating Doughnut Disks”, Japanese Journal of Applied Physics, 36 (1997) 380.
[41] F.C. Chou and P.Y. Wu, “Effect of Air Shear on Film Planarization During Spin Coating”, Journal of Electrochemical Society, 147 (2000) 699.
[42] M. M. J. Decre and G. M. Vromans, “Cover Layer Technology for The High-Numerical-Aperture Digital Video Recording System”, Japanese Journal Applied Physics, 39 (2000) 775.
[43] T. Komaki, H. Hirta, M. Usami, T. Ushida, and N. Hayashida, “Spin-coating Technology of The Cover Layer for Digital Video Recording-Blue Disc”, Japanese Journal of Applied Physics, 41 (2002) 3922.
[44] F. C. Chou, M. W. Wang, S. C. Gong, and Z. C. Yang, “Reduction of Photoresist Usage During Spin Coating”, Journal of Electronic Materials, 4 (2001) 432.
[45] M. Sanada, K. Nakano, and M. Matsunaga, “Characteristics of Material For Photoresist Spin Coating: Property For Reduction of Photoresist Consumption”, Japanese Journal of Applied Physics, 37 (1998) L1448.
[46] B. Lorefice, D. Chen, B. Mullen, E. Gurer, R. Savage, and R. Reynolds, “How to Minimize Resist Usage During Spin Coating”, Semiconductor International, 21 (1998) 179.
[47] J. A. Th. Verhoeven and W. S. Mischke, “Developments in CD-R”, Proceedings Fifth SPIE International Symposium on Optical Storage, 4085 (2001) 298.
[48] N. P. Pham, L. M. Scholtes, R. Klerk, P.M. Sarro, J. N. Burghartz, and B. Wieder, “Direct Spray Coating of Photoresist for MEMS Applicaions”, Proceedings of SPIE - The International Society for Optical Engineering, 4557 (2001) 312.
[49] N. P. Pham, E Boellaard, J. N. Burghartz, and P. M. Sarro, “Photoresist Coating Methods for The Integration of Novel 3-D RF Microstructure”, Journal of Microelectromechanical Systems, 13 (2004) 491.
[50] T. Luxbache and A Mirza, “Spray Coating for MEMS Interconnect & Advanced Packaging Applications”, Sensors, 16 (1999) 61.
[51] J. Derksen, S. Han, and J. H. Chun, “Extrusion-Spin Coating: An Efficient Photoresist Coating Process for Wafers”, Proceedings IEEE International Symposium on Semiconductor Manufacturing Conference, (1999) 245.
[52] S. Han, J. Derksen, and J. H. Chun, “Extrusion Spin Coating: An Efficient and Deterministic Photoresist Coating Method in Microlithography”, IEEE Transactions on Semiconductor Manufacturing, 17 (2004) 12.
[53] K. Takahiro, “Novel Coating Apparatus using Nozzle-Scan Technique”, IEEE International Symposium on Semiconductor Manufacturing Conference, Proceeding, 1 (2000) 395.
[54] S. Hiroshi, I. Takayuki, W. Yukihiro, S. shinichi, and K. Takahiro, “Evaluation of Resist-Film Property by Scan and Spin Coating”, Proceedings of SPIE – Advances in Resist Technology and Process XXI, 5376 (2004) 939.
[55] T. E. Adams and E. Pa, “Method of Spiral Resist Deposition”, U.S. Patent 5395803 (1995).
[56] T. E. Adams and E. Pa, “Method of Spiral Resist Deposition”, U.S. Patent 5532192 (1995).
[57] A. Curtis, P. Bisson, C. Hamel, and E. Hughlett, “Minimum Consumption Wafer Coating”, Proceedings 8th IEEE International Symposium on Advanced Packaging Materials, (2002) 302.
[58] F. C. Chou and K. H. Huang, “Reduction of Amount of Dye During Spin Coating”, Japanese Journal of Applied Physics, 45 (2006) 1757.
[59] D. E. Bornside, R. A. Brown, P. W. Ackmann, J. R. Frank, A. A. Tryba, and F. T. Geyling, “The Effect of Gas Phase Convection on Mass Transfer in Spin Coating”, Journal of Applied Physics, 73 (1993) 585.
[60] D. E. Bornside, “Mechanism for the Local Planarization of Microscopically Rough Surfaces by Drying Thin Films of Spin-Coated Polymer/Solvent Solutions”, Journal of the Electrochemical Society, 137 (1990) 2589.
指導教授 周復初(Fu-Chu Chou) 審核日期 2007-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明